
Performance Optimization of High-Conflict

Transactions within the Hyperledger Fabric

Blockchain

Alexandros Stoltidis and Kostas Choumas and Thanasis Korakis

Dept. of ECE, University of Thessaly, Volos, Greece

Email: stalexandros, kohoumas, korakis@uth.gr

Abstract—Hyperledger Fabric (HLF) is a blockchain (BC)
platform that supports secure high-throughput and low-latency
transactions. However, it encounters challenges in managing con-
flicting transactions that negatively affect throughput and latency.
This paper proposes a novel solution to address these challenges
and improve performance. Our solution involves reallocating the
Multi-Version Concurrency Control (MVCC) from the validation
phase to a preceding stage in the transaction flow in order to
enable early detection of conflicting transactions. Specifically, we
propose and evaluate two innovative modifications, called Orderer
Early MVCC (OEMVCC) and OEMVCC with Execution Avoidance
(OEMVCC-EA). Our experimental evaluation results demonstrate
significant throughput and latency improvements, providing a
practical solution for high-conflict applications that demand high
performance.

Index Terms—Blockchain, Hyperledger Fabric, Transaction
flow, Conflicting Transactions, Transaction Optimization

I. INTRODUCTION

BC is a Distributed Ledger Technology (DLT) [2], main-

taining an immutable, distributed, and decentralized ledger of

transactions across a network of nodes that reach a consensus

on their states without a central authority [3]. DLT encom-

passes several distributed design paradigms that determine the

design of the BC network. The two most prominent paradigms

are permissionless or public, like Bitcoin and Ethereum, and

permissioned or private, like HLF, Quorum, and Corda. These

paradigms govern the access control of participants on the BC

network [4].

Our research aims to optimize transaction throughput and

minimize latency in applications where high-conflict trans-

actions compete to modify the same assets within HLF.

Transaction throughput is the rate at which transactions are

committed to the ledger, encompassing the world state, the log

history, and the BC. Transaction latency is the time it takes

since a client submits a transaction proposal till the transaction

gets committed [5]. We thoroughly examine and evaluate the

different phases a transaction undergoes in the Execute-Order-

Validation (EOV) [6] transaction flow of HLF, and based on

our comprehensive analysis, we propose and assess various

optimizations across its transaction flow.

The remainder of this paper is structured as follows:

Section II provides an overview of the HLF architecture

and its performance limitations under specific circumstances.

More details on this work are given in [1].

Section III explores throughput and latency optimizations pro-

posed in the existing literature. In Section IV, we present our

solution, while Section V outlines our evaluation framework,

experiments, and results. Finally, Section VI summarizes the

content of this paper.

II. SYSTEM DESCRIPTION - THE HLF ARCHITECTURE

In our research, we employ the latest HLF architecture,

which includes the peers, the gateway (GW) [7], and the

ordering service. Peers can function as either endorsing or

non-endorsing peers. Endorsing peers use smart contracts or

chaincodes in the execution phase to execute and endorse

transaction proposals submitted by the clients. The GW is

integrated within each peer, providing a layer of abstraction

for the underlying network infrastructure to the clients. The

ordering service consists of orderers that incorporate a consen-

sus mechanism (Apache Kafka/Zookeeper or Raft [8]) in the

ordering phase to order the received transactions into blocks

and broadcast them to the peers with a gossip protocol.

Once a peer receives a block, the validation phase com-

mences [9]. Firstly, it verifies the syntactic signature of the

block and sends it through a pipeline of operations to validate

each transaction individually. After syntactically validating

each transaction within the block, it executes the Validation

System ChainCode (VSCC) to ensure that endorsements adhere

to the specified chaincode endorsement policy. Transactions

fail VSCC due to inadequate endorsements, endorser signature

issues, or mismatches in the read-write set versions between

endorsing peers. Transactions failing VSCC are designated as

invalid to prevent their commitment to the ledger.

Transactions that successfully pass VSCC go through

MVCC, mitigating the double-spending problem. MVCC pre-

vents read-write conflicts by comparing the versions of the

keys in the read set during execution with those in the world

state. It invalidates transactions upon detecting read conflicts or

phantom reads. The former occurs as the read sets contain the

versions of the keys during the execution phase, while write

operations might increment these versions upon commitment.

These discrepancies cause an MVCC read conflict at the

validation phase. Phantom read conflicts occur during range

queries by checking the entire range of keys for any insertions,

deletions, or updates. If any alteration is detected, MVCC



invalidates the transaction. Finally, the peer commits the block

to the ledger.

Problems arise when multiple clients with conflicting in-

terests reference identical keys on their transactions. Peers

only detect conflicts during the validation phase, impeding

throughput and latency. Shifting part of the validation to earlier

stages of the transaction flow would improve efficiency and

system performance.

III. RELATED WORK

Current research focuses on maximizing transaction

throughput and minimizing latency, with limited work on

early detection mechanisms for conflicting transactions in

HLF. Existing literature mainly addresses conflict mitigation

during execution or ordering phases. In [10], a lock-based

mechanism detects conflicting transactions. However, its syn-

chronized access to a trusted distributed locking service makes

it unsuitable for delay-critical applications. Research in [11]

and [12] moves part of the MVCC on peers after the execution

phase. Each peer uses a local cache for the read-write sets

of endorsed transactions, aborting transactions dependent on

cached keys to prevent inevitable MVCC failures. As the

validity of transactions depends on their position on the block,

the peers should re-evaluate these transactions at the validation

phase. In [13] and [14], the authors propose reducing MVCC

failures using a conflict graph to reorder and abort conflicting

transactions at the ordering phase. Similarly, [15] explores

reducing conflicts by minimizing aborted transactions. It uses

binary integer programming to group transactions into blocks

for parallel processing, filtering obsolete ones, and prioritizing

reads. While these methods improve performance, they add

overhead and alter transaction sequences, yielding different

results from the original HLF transaction flow.

IV. PROPOSED SOLUTION

Our research proposes two distinct modifications of the

EOV transaction flow, denoted as EOV-Original (EOV-OG),

named OEMVCC and OEMVCC-EA. These modifications

rely on reallocating the MVCC process from the peers to

the ordering service. This adjustment enhances concurrency

between the ordering and validation phases, detecting invalid

transactions as soon as possible while preserving the same

order of transactions as the EOV-OG.

In this section, we will delve deeper into the intricacies

of OEMVCC and OEMVCC-EA, discussing their differences

and advantages in detail. As OEMVCC-EA is an extension of

OEMVCC, we will begin by analyzing the logic behind the

less intricate inner workings of OEMVCC before examining

the more sophisticated OEMVCC-EA.

A. OEMVCC

Implementing OEMVCC requires modifications across the

various components of the HLF network. The most significant

modification is the reallocation of the MVCC process from

the peers to the orderers. When the ordering service receives

a transaction from a GW, it orders it into a block using

a consensus mechanism. The orderers then asynchronously

perform MVCC to classify and mark invalid transactions

within a block. When a transaction is invalid, the ordering

service promptly notifies the client that the transaction failed

through the GW that sent the transaction. When the block

reaches its maximum block size or block interval elapses, the

ordering service waits until all transactions within the block

have undergone MVCC before broadcasting it to the peers.

OEMVCC takes advantage of the latest versions of HLF,

which can incorporate VSCC on the GW, invalidating trans-

actions before dispatching them to the ordering service and

notifying the client earlier in the transaction flow. Performing

VSCC directly after the execution phase on the GW guarantees

that valid MVCC transactions on orderers will successfully

pass VSCC on the validation phase and eventually change the

version of their keys upon block commitment.

OEMVCC implements a cache-based mechanism to incor-

porate MVCC and avoid direct access to the world state on

the ordering service. The MVCC procedure checks the version

numbers of the read-sets for each transaction against the cache.

A transaction is invalid if one or more versions are outdated

compared to the ones recorded in the cache. If all transaction

keys succeed MVCC, the transaction is valid, and the orderers

can update the cache with the expected versions of the keys

upon commitment.

The caching mechanism within the ordering service should

account for the logic of the underlying consensus algorithm.

Currently, the default consensus algorithm is Raft, consisting

of a leader and its followers. It regularly elects a leader orderer

who orchestrates the ordering of transactions into blocks for its

leadership duration. Followers forward incoming transactions

to their leader, ensuring strong consistency between their log

entries and those of the leader. In OEMVCC, the leader also

performs MVCC, implying that the caching mechanism should

incorporate strong consistency in its entries to accommodate

elections, as a follower can transition into a leader at any time

and undertake the ordering and MVCC. Thus, we implement

a distributed cache coordinated by the consensus protocol to

maintain this strong consistency and incorporate MVCC in the

ordering service.

The behavior of peers during the validation phase also

changes in OEMVCC. Contrary to the EOV-OG, where trans-

actions sequentially undergo VSCC and MVCC, peers in

OEMVCC bypass the VSCC and MVCC procedures, as the

ordering service has already designated all transactions within

the block as valid or invalid. Finally, we extend the GW to

support receiving and handling notifications by the ordering

service regarding invalid transactions.

B. OEMVCC-EA

OEMVCC-EA extends upon OEMVCC, aiming to increase

transaction throughput while conserving network and compu-

tational resources by dropping invalid transactions earlier in

the transaction flow. Similarly to OEMVCC, in OEMVCC-EA,

the GW performs VSCC, and the ordering service is MVCC.

OEMVCC-EA reduces block sizes in the ordering phase by



discarding invalid transactions after MVCC, ensuring blocks

contain solely valid transactions. Consequently, the ordering

service proactively informs the peers about the keys in the

write sets of valid transactions to optimize their execution and

validation phases. More specifically, endorsing peers utilize

the write sets of valid transactions to avoid simulating trans-

actions containing these keys since the resulting read-write

sets will eventually become outdated, and the transaction will

ultimately fail. Finally, as the peers receive blocks containing

exclusively valid transactions, they can directly commit the

included transactions. Once a transaction gets committed to the

ledger, the peer can remove the keys included on the write sets

of the transaction, enabling it to endorse upcoming transactions

that involve these keys.

V. EVALUATION FRAMEWORK

To evaluate OEMVCC and OEMVCC-EA, we deployed

an HLF v2.4.4 network on the NITOS [16] testbed based

on the deployment options in [17]. The network includes ten

clients, three orderers, and four peer nodes. The orderers are

on a dedicated NITOS node and use the Raft consensus with

a block size of 10 transactions and a block interval of 2

seconds, while clients and peers are on separate NITOS nodes.

A distributed Redis cache supports the caching mechanism for

the MVCC in the ordering service.

We enhanced the asset transfer [17] application to assess

performance under high transaction conflict rates. Clients

concurrently submit conflicting transactions to modify similar

assets, with conflict rates of 20%, 50%, and 80%. Each trans-

action proposal is sent to two out of four peers for execution,

requiring at least one endorsement before proceeding to the

ordering phase.

Figure 1 shows the average duration of the execution phase

relative to the percentage of conflicting transactions. Similarly,

Figures 2 and 3 depict the average transaction latency and

throughput, respectively. Latency is measured from when the

client submits a transaction until it receives a notification

about its status. Throughput is calculated based on the num-

ber of status notifications sent to clients within a specified

time frame. To compare performance, we mark OEMVCC,

OEMVCC-EA, and EOV-OG with the blue horizontally-lined,

the red vertically-lined, and the black diagonally-lined bars,

respectively. We also highlight the latency and throughput

of the overall, valid, and invalid transactions by the circle-

pointed, square-pointed, and triangle-pointed symbols, respec-

tively. These metrics help us evaluate our modifications, of-

fering insights into peer load and additional overhead. We

first compare OEMVCC and OEMVCC-EA with EOV-OG and

then OEMVCC with OEMVCC-EA.

A. OEMVCC and OEMVCC-EA vs EOV-OG

Figure 1 indicates that OEMVCC and OEMVCC-EA out-

perform EOV-OG, reducing the execution duration to at least

by half, regardless of the conflict rate. As the execution

duration closely mirrors the load on the peers, this reduction

highlights the importance of early invalidation of transactions

within the ordering service. By offloading MVCC to the

ordering service and invalidating earlier in the transaction

flow, the peers can conserve resources, enabling more efficient

transaction simulation during the execution phase.

0 10 20 30 40 50 60 70 80 90 100

C
o
n
fl
ic

ti
n
g
 T

ra
n
s
a
c
ti
o
n
s
 (

%
)

Execution Duration (ms)

31.36 ± 5.14

26.92 ± 3.9

77.14 ± 9.09

26.56 ± 4.25

34.28 ± 5.44

68.84 ± 9.15

30.88 ± 2.44

27.93 ± 6.29

68.75 ± 9.62

20

50

80

EOV-OG
OEMVCC-EA
OEMVCC

Fig. 1. Execution duration relative to the rate of conflicting transactions.

Figure 2 illustrates that OEMVCC and OEMVCC-EA have

significantly lower transaction latency than EOV-OG, regard-

less of the conflict rate. This improvement is due to reduced

latency for both invalid and valid transactions. Invalid transac-

tions are identified earlier, while valid transactions benefit from

asynchronous MVCC and ordering, avoiding the sequential

ordering and validation as in EOV-OG. The transfer of MVCC

to orderers and earlier invalidation, particularly in OEMVCC-

EA, also helps peers conserve resources for processing valid

transactions, further reducing latency.

±56

±46.3

±71.5

±41

±36.8

±59.7

±73.9

±39.3

±63.6

±69.4

±58.8

±74.2

±86.5

±99.2

±110.4

±368.2

±242.7

±210.9

±15.9

±35.5

±38.1

±14.5

±32.3

±26.7

±38.1

±22.1

±47.1

20

50

80

0 100 200 300 400 500 600 700 800 900

C
o
n
fl
ic

ti
n
g
 T

ra
n
s
a
c
ti
o
n
s
 (

%
)

Latency (ms)

EOV-OG
OEMVCC-EA
OEMVCC

Valid
Overall
Invalid

Fig. 2. Transaction latency relative to the rate of conflicting transactions.

Figure 3 demonstrates that OEMVCC and OEMVCC-EA

consistently outperform EOV-OG in transaction throughput

regardless of the conflict rate. This superiority in throughput

is due to the lower latency of transactions in OEMVCC

and OEMVCC-EA. However, both OEMVCC and OEMVCC-

EA exhibit a higher standard deviation than EOV-OG, as

their performance heavily depends on the probability of early

invalidation of transactions.



±0.4

±0.4

±0.1

±0.4

±0.4

±0.2

±1.1

±0.7

±0.3

±0.4

±0.4

±0.1

±0.4

±0.4

±0.2

±1

±0.5

±0.3

±0.6

±3

±0.2

±0.6

±2.1

±0.2

±1

±2.6

±0.3

20

50

80

0 1 2 3 4 5 6 7 8 9 10 11 12

C
o
n
fl
ic

ti
n
g
 T

ra
n
s
a
c
ti
o
n
s
 (

%
)

Throughput (Transactions/Second)

EOV-OG
OEMVCC-EA
OEMVCC

Valid
Overall
Invalid

Fig. 3. Transaction throughput relative to the rate of conflicting transactions.

B. OEMVCC vs OEMVCC-EA

OEMVCC-EA outperforms OEMVCC in execution dura-

tion, overall latency, and overall throughput at 20% and 80%

conflict rates, which is not the case for 50%, as illustrated in

Figures 1, 2, and 3, respectively. The advantage of OEMVCC-

EA is the earlier invalidation of transactions in the execution

phase, conserving resources for potentially valid transactions.

However, at a 50% conflict rate, the overhead of its cache-

based nature becomes apparent. In OEMVCC-EA, peers up-

date the status of keys within their cache during transaction

commitment, avoiding unnecessary simulations but potentially

impeding performance. At 20% conflict rates, the performance

gains from resource conservation outweigh the overhead. At

80% conflict rates, most transactions are proactively inval-

idated, increasing performance with earlier notification and

conserving enough resources to improve performance despite

the concurrent activity. However, at 50% conflict rates, the

overhead offsets the benefits of resource conservation, lead-

ing to a decline in performance. This tradeoff between the

overhead and early invalidation with resource conservation

explains the underperformance of OEMVCC-EA in execution

duration, overall latency, and overall throughput at 50% con-

flict rates compared to OEMVCC.

Figures 2 and 3 indicate that OEMVCC-EA outperforms

OEMVCC in latency and throughput of invalid transactions

regardless of the conflict rate, as it can invalidate transactions

earlier in the transaction flow. However, the performance of

OEMVCC-EA for valid transactions decreases as the ratio

of conflict rate increases, where its overhead also increases.

Thus, OEMVCC-EA underperforms in latency and throughput

of valid transactions compared to OEMVCC under 50% and

80%, while it excels at a 20% conflict rate where the overhead

is minimal. Finally, OEMVCC-EA exhibits a higher standard

deviation in the throughput of invalid transactions, primarily

its reliance on the timeliness of information within the caches

of peers that lack strong consistency.

VI. CONCLUSION

Our research shows that OEMVCC and OEMVCC-EA

outperform EOV-OG in transaction latency and throughput, re-

gardless of conflict rate. Similarly, OEMVCC-EA outperforms

OEMVCC with invalid transactions. Conversely, OEMVCC

performs better with valid transactions as the conflict rate

increases, where the overhead of OEMVCC-EA becomes

significant.

ACKNOWLEDGMENTS

This project has received funding from the European

Union’s HE research and innovation programme under grant

agreement No 101084188. Views and opinions expressed are,

however, those of the authors only and do not necessarily

reflect those of the European Union or the European Research

Executive Agency (REA). Neither the European Union nor

the granting authority can be held responsible for any use that

may be made of the information the document contains.

REFERENCES

[1] Arxiv. https://arxiv.org/abs/2407.19732.
[2] Ali Sunyaev. Distributed Ledger Technology, pages 265–299. Springer

International Publishing, February 2020.
[3] Christian Cachin and Marko Vukolić. Blockchain Consensus Protocols

in the Wild, 2017.
[4] Yannis Bakos and Hanna Halaburda. Permissioned vs Permissionless

Blockchain Platforms: Tradeoffs in Trust and Performance. NYU Stern

School of Business Working Paper, February 2021.
[5] Thakkar et al. Performance Benchmarking and Optimizing Hyperledger

Fabric Blockchain Platform. In Proc. of IEEE MASCOTS, 2018.
[6] Androulaki et al. Hyperledger fabric: a distributed operating system for

permissioned blockchains. In Proc. of EuroSys, 2018.
[7] Foschini et al. Hyperledger Fabric Blockchain: Chaincode Performance

Analysis. In Proc. of ICC, 2020.
[8] Ongaro et al. In Search of an Understandable Consensus Algorithm. In

Proc. of USENIX ATC, 2014.
[9] Chacko et al. Why Do My Blockchain Transactions Fail? A Study of

Hyperledger Fabric. In Proc. of ACM SIGMOD conf. on Management

of Data, 2021.
[10] Xu et al. Locking mechanism for concurrency conflicts on Hyperledger

Fabric. In Proc. of WISE conf., 2020.
[11] Aditya et al. Pathak. Early-stage Conflict Detection in HLF-based Delay-

critical IoT Networks. In Proc. of IEEE CNS, 2023.
[12] Helmi Trabelsi and Kaiwen Zhang. Early Detection for Multiversion

Concurrency Control Conflicts in Hyperledger Fabric, 2023.
[13] Ankur Kumar Sharma et al. Blurring the Lines between Blockchains

and Database Systems: the Case of Hyperledger Fabric. In Proc. of

ACM SIGMOD conf. on Management of Data, 2019.
[14] Pingcheng Ruan et al. A Transactional Perspective on Execute-order-

validate Blockchains, 2020.
[15] Xu et al. Mitigating Conflicting Transactions in Hyperledger Fabric-

Permissioned Blockchain for Delay-Sensitive IoT Applications. IEEE

Internet of Things Journal, PP:1–1, 01 2021.
[16] NITOS. http://nitos.inf.uth.gr/.
[17] Hyperledger Fabric Samples. https://github.com/hyperledger/

fabric-samples.


