
SDN Implementation of Slicing and Fast Failover in
5G Transport Networks

Dimitris Giatsios, Kostas Choumas, Paris Flegkas, Thanasis Korakis
School of Electrical and Computer Engineering

University of Thessaly

Daniel Camps-Mur
Mobile and Wireless Internet Group

i2CAT Foundation

Abstract—Software-defined networking is at the root of fu-
ture 5G transport network design. Among others, it allows for
automated network reconfiguration and network slicing support.
In this paper we present an OpenFlow-based implementation of
a control plane area in the transport network architecture envi-
sioned by the 5G-XHaul project. We analyze the implementation
of the slicing mechanism at the network edge. Furthermore, we
propose a simple low-overhead fast proactive failover scheme for
recovering from single link failures, without the delays and packet
drops associated with reaching a remote controller entity.

I. INTRODUCTION

Transport networks for 5G cellular services are expected
to accommodate multiple tenants through virtualization and to
satisfy stringent QoS requirements, such as those related to the
transport of fronthaul and backhaul interfaces for supporting
centralized and distributed radio access network (RAN) de-
ployments. In addition, the increased fluctuations in demand
patterns due to network densification call for flexible trans-
port architectures. Considering these challenges, the 5G-PPP
Architecture Working Group has recognized that virtualization
and softwarization will shape the future 5G architecture [1].

5G-Xhaul [2] is a project under the umbrella of the 5G-
PPP initiative, focusing on challenges in the design of 5G
transport networks. Its scope is to provide a flexible transport
network consisting of multiple technologies, including wireless
and optical segments, which will facilitate creation of virtual
and isolated overlay networks belonging to different tenants.

In this paper, we present an Openflow-based implementa-
tion of functionalities in a control plane area of the 5G-XHaul
architecture. We provide details on our flow-table design for
mapping tenant slice traffic to transport tunnels. We also
propose a proactive failover scheme which, given a link failure
in the primary path of a tunnel, reroutes traffic to alternative
paths, without the delay involved with contacting a remote
controller. We measure the impact of this proactive approach in
terms of the number of additional flow table rules that have to
be installed in the transport nodes and examine how this scales
with the size of the area. Our scheme works in parallel with
the reactive approach where a remote controller with area-wide
view reconfigures the network topology as needed to recover
from arbitrary numbers of failures.

The remainder of this paper is organized as follows. In
section II, we summarize the data plane abstraction and control
plane architecture of the 5G-XHaul transport network. In
section III, we provide more details on the Openflow-based
implementation of transport node functionalities. In section

Fig. 1: Example of design and deployment of a tenant’s
virtual network.

IV, we present a proactive failover mechanism guaranteeing
recovery from single link failures. We mention related work
in section V and conclude the paper in section VI.

II. 5G-XHAUL DATAPLANE ABSTRACTION AND
HIERARCHICAL CONTROL PLANE ARCHITECTURE

In terms of the dataplane abstraction, the 5G-XHaul trans-
port network can be seen as a collection of isolated virtual
networks. Each of these virtual networks is controlled by a ten-
ant, which brings its virtual entities, namely Virtual Network
Functions (VNFs) and virtual DataPaths (vDPs). VNFs are the
end points and the vDPs are the tenant controlled datapaths.

The dataplane is based on three types of transport nodes
which represent dataplane functions and are clustered into
areas, as depicted in Figure 1. First, Edge Transport Nodes
(ETNs) lie at the edge of the areas and are responsible
for hosting the tenant’s virtual entities. Second, Inter-Area
Transport Nodes (IATNs) support the necessary functions to
connect different areas, possibly implemented using different
transport technologies. Finally, regular Transport Nodes (TNs)
support an area specific transport technology, and provide
forwarding services between ETNs and IATNs of that area.
Specifically, the ETNs and IATNs are connected through
transport tunnels, based on the forwarding services of the
TNs. Figure 1 illustrates an example implementation of a
virtual network over the 5G-XHaul transport network. More
information on potential physical implementations of these
nodes can be found in [3].

Each virtual network is a slice of the transport network.

Different local Transport Slice IDs may be used in each 5G-
XHaul area. Having a notion of slice ID at the data plane
is useful in order to easily deploy policies at the tenant or
slice level. A transport slice is composed of i) virtual layer
two segments and ii) virtual entities (VNFs/vDPs). A virtual
layer two segment emulates a broadcast domain over a set of
tenant virtual entities and is identified by a Layer 2 Segment
Identifier (L2SID). L2SIDs are unique system wide, meaning
that L2SIDs cannot be reused within or across slices. VNFs
are identified by a MAC address scoped to a single layer two
segment. vDPs contain custom network control logic defined
by the tenant, for instance they may correspond to a virtual
switch. Unlike a VNF, a vDP may have several interfaces,
each one connected to a different virtual layer two segment.
Each interface of a vDP is identified again by a MAC address
scoped to the L2SID where it is attached.

All transport nodes embed one major function, the For-
warding Information Base (FIB). FIB is in charge of forward-
ing packets between VNFs/vDPs, which are either colocated in
a single ETN or bound to different ETNs. In the second case,
packets are inserted into pre-instantiated transport tunnels,
implemented with use of encapsulation. Traffic from multiple
slices can be combined into a single tunnel. The Transport
network Adaptation Function (TAF) is responsible for pushing
(or popping) the corresponding transport header, which signals
at least three major pieces of information: i) the address of the
destination ETN (which might be located in the same or in
another area), ii) the Transport Slice Id and iii) the tunnel
ID. Only ETNs/IATNs feature a TAF corresponding to the
transport technology used in the area. For instance, in an
Ethernet-based area, Provider Backbone Bridging (PBB) [4]
can be used to encapsulate the packets.

The control plane of 5G-XHaul transport network is com-
posed of a hierarchy of logical controllers, as illustrated in Fig-
ure 1. The top level controller, referred to as Top controller, is
responsible for provisioning per tenant slices and orchestrating
the required connectivity across areas and domains (e.g. optical
transport domain, wireless transport domain). At the lowest
level of the hierarchy we find the Level-0 Area controller (AC)
that is responsible for the provisioning and maintenance of
transport tunnels between ETNs and IATNs of a given area; a
Level-0 controller operates at the level of individual network
elements. A set of Level-0 controllers, which are technology-
specific, are logically organized under a Level-1 controller.
The latter is technology-agnostic, is in charge of maintaining
connectivity between the corresponding areas, and operates
with a higher level of abstraction, namely maintains state at the
area level. Finally, all transport nodes (ETNs/IATNs/TNs) are
directly controlled by Local Agents (LA) which are the glue
between their datapaths and the ACs. The reader is referred to
[5], [6] for a more detailed presentation of the overall control
plane architecture of 5G-XHaul.

In this work, we focus on the area-level control plane and
introduce a two-level approach where the AC interacts with the
LAs residing inside (or in machines attached to) the transport
nodes of the area. We have adopted an explicit tunnel setup
approach in the transport network where the control plane
functions proactively. Rather than reacting to an incoming
packet, the SDN controller(s) populates the flow tables (tunnel
setup) ahead of time for all traffic matches that could reach

a transport node, thereby eliminating any latency induced by
consulting a controller on every new flow when a packet-in
event occurs. The result is all packets are forwarded at line
rate, by merely doing a flow table lookup in the switches as
it happens today where the forwarding tables of the network
nodes are populated by the routing protocols.

The two-level SDN control architecture we propose in
this work, combines a longer-term, off-line, centralised control
implemented in Level-0 Area Controller with a more dynamic,
on-line, distributed handling of traffic fluctuations and events
implemented at the Local Agents in each transport node. The
AC is responsible for proactively setting up all tunnels and
allocating the available resources in the area it controls, in-
cluding alternatives used for load balancing or failure recovery
for a given provisioning period. The LAs are responsible for
reacting to network events, perform dynamic allocation of
resources and map or reroute incoming traffic to the tunnels
provided by the AC. With this approach, LAs may be able to
deal locally with certain events that may occur during network
operation without triggering a reconfiguration from a remote
controller, which might incur significant delays. Stability of the
network configurations is guaranteed since all LAs, despite
taking local decisions, are following the directives provided
by the AC which has a network-wide view of the area. When
LAs are unable to deal with unexpected events, they might
issue alarms to the AC which will then trigger a whole area
reconfiguration. As an example of this approach, we describe
a proactive failover mechanism in section IV.

III. DETAILS ON THE IMPLEMENTATION OF THE
5G-XHAUL TRANSPORT NODES

Our transport node implementation requires support for
PBB headers and multiple flow tables, hence it works for
OpenFlow version 1.3 or newer. It has been tested on Ryu, one
of the few frameworks supporting newer OpenFlow versions.

A. ETN

The main function of an ETN is to host virtual entities from
several tenants, and to offer a datapath abstraction connecting
them to the transport network. In Figure 1, ETN B hosts VNF
3 and both interfaces of vDP 2, and acts as their gateway to
entities in other ETNs, e.g. VNFs 1, 4 and 5. Apart from the
ports where local virtual entities are connected, it also features
a port which connects it to all the other ETNs/IATNs in its
area through transport tunnels; we will refer to it as the ETN’s
external port.

Each ETN maintains a set of five mappings with re-
sponsibility of its LA: i) port⇒L2SID, ii) <L2SID, dst.
MAC>⇒port, iii) <L2SID, dst. MAC>⇒dst. ETN, iv) dst.
ETN⇒tunnel ID and v) L2SID⇒transport slice ID. The LA
is responsible for updating these mappings accordingly after
instructions received by higher level controllers. Note that the
ETN needs to be aware of any addition, removal or migration
of virtual entities attached to an L2SID present in at least one
of the ETN’s own entities, no matter where this takes place
in the transport network. This is implemented with the hierar-
chical control topology of 5G-Xhaul. The updating procedure
is proactive. Whenever a tenant requests a modification in its
virtual network (e.g. VNF migration to another ETN), the 5G-
Xhaul operator first makes sure that the rules for all potential

Fig. 2: ETN as a datapath.

flows from/to the affected virtual entities are installed before
it allows the tenant to start sending flows through them.

ETN implements FIB and TAF and features four flow tables
(cf. Figure 2):

• Table 0: packet decapsulation

• Table 1: packet classification for layer 2 segmentation

• Table 2: packet forwarding (FIB)

• Table 3: L2SID tagging and packet encapsulation

The utilization of four flow tables, instead of using the most
typical approach of a single flow table, enabled the decrease
of the total number of flow entries in each ETN. From now
on, without loss of generality, we assume that all packets are
Ethernet frames and PBB is used for their encapsulation.

Packets arriving at the ETN datapath first enter Table 0,
which decapsulates them if they have been received through
the external port. Packets received from local virtual entities
are not modified. For example, in Figure 1, Table 0 of ETN B
decapsulates the packets received from ETN C, but not packets
coming from the local VNF 3. In both cases, packets are moved
to Table 1 without a PBB header.

Table 1 marks the metadata for each packet it handles
with the L2SID of the layer two segment the source virtual
entity belongs to, and moves the packet to Table 2. In the case
that the packet has been received from a local virtual entity,
the port⇒L2SID mapping is used to determine the L2SID.
For example, in Figure 1, ETN B marks with L2SID=β the
metadata of all packets coming from the port connecting to
VNF 3. If the packet has been received from entities hosted in
other ETNs, then their L2SID is defined by their VLAN tags
(one VLAN tag for maximum 4096 globally unique L2SIDs
or two VLAN tags for even more). The VLAN tags are pushed
before packet encapsulation in the source ETN. For example, in
Figure 1, ETN B checks the VLAN tags of the packets coming
from VNF 4 and marks their metadata with L2SID=β.

Table 2 forwards the packet to the virtual entity that i)
is identified by the packet’s destination MAC address and ii)
belongs to the segment identified by the L2SID of the packet’s
metadata. In this way, layer 2 segmentation is achieved, that is,
packets are forwarded only between entities belonging to the
same segment. There is also full address space virtualization,
meaning that different slices and segments can reuse MAC
and upper layer addresses. The forwarding process utilizes the
mapping <L2SID, dst. MAC>⇒port. If the port pointed to
is the external port, then the packet is forwarded to Table 3.
Otherwise, it is forwarded to the designated local port.

Table 3 first pushes the L2SID of the packets it receives
(visible in their metadata) in their VLAN tags. Then it needs to
push the PBB header. It puts its own address in the Backbone
Source Address (B-SA) field. It resolves the destination ETN
address from the mapping <L2SID, dst. MAC>⇒dst. ETN
and puts it in the Backbone Destination Address (B-DA) field.

Fig. 3: Packet progress.

Then, it resolves the Transport Slice ID from the mapping
L2SID⇒transport slice ID and puts it in the Backbone Service
Instance Identifier field (I-SID). Recall that this ID is used for
enforcing slice specific policies in the transport network, so we
need it to be visible in the PBB header. Finally, the table uses
the mapping dst. ETN⇒tunnel ID to determine the tunnel ID,
puts it in the Backbone VLAN ID field (B-VID) and forwards
the packet to the external port of the ETN.

As an example, Figure 3 illustrates the progress of a packet
going from VNF 3 to VNF 4. In the bottom row we can see
the tenant view of the Ethernet frames exchanged, which is
agnostic of transport-specific details. In the top row, we see
the form in which the packet traverses the transport nodes,
with its inner VLAN tag set with its L2SID, and encapsulated
with the PBB header.

The tunnel ID minimally defines the primary path from
the source ETN towards the destination ETN/IATN, but can
also be used to provision multiple backup paths, activated at
TN-level. In Figure 1, ETN B encapsulates packets destined to
ETN C with the ID of tunnel BC, while for packets destined
to ETN D it pushes the ID of tunnel BE, as IATN E is the
one connecting the areas of the source and destination ETNs.

B. IATN

Each IATN acts like a bridge between two areas, since it
is in charge of moving packets from one area to the other,
forwarding them to the appropriate tunnels. Tunnel selection
for packet forwarding is based on the destination ETN. IATN
does not host virtual entities, thus it handles only encapsulated
packets. For each incoming packet, an IATN determines which
tunnel will be used for forwarding it, changes its tunnel ID
and forwards it through the appropriate port. For this pur-
pose, IATN maintains the mappings dst. ETN⇒port and dst.
ETN⇒tunnel ID. In addition, since different local Transport
Slice IDs can be used in each area, the IATN also needs to
account for relevant ID translations, hence it needs to maintain
an additional mapping Area X Tr. Sl. ID⇒Area Y Tr. Sl. ID for
any pair of areas X, Y it connects. For example, in Figure 1,
IATN E receives through Area 2 a packet from VNF 5 that is
destined to vDP 2, updates the B-VID with the ID of tunnel
EB, translates the I-SID if necessary, and forwards it to TN4.

C. TN

TN’s datapath implements FIB by forwarding packets
based on their tunnel ID. AC is responsible for determining
which tunnels are required for connecting the ETNs/IATNs of
its area, and for establishing primary and backup paths for
these tunnels. For example, in Figure 1, the path B → 1 →
2 → 3 → 5 → C connecting ETN B and ETN C might

correspond to the primary path used for this connection. We
get into more detail regarding the TN’s datapath in the next
section, after presenting our policy for fast failover.

IV. A SIMPLE APPROACH FOR PROACTIVE FAILOVER AT
TN LEVEL

Fast recovery from failures is a crucial feature for any
transport network. In the context of a 5G-Xhaul control plane
area, the latency caused by waiting for a remote AC to take
action (i.e. reactive failover) might be unacceptable. Another
concern is related to the possibility of temporary loss of con-
nection with the AC. Thus, proactive approaches incorporating
alternative paths directly at the data plane or, in the worst case,
stored at LA memory, appear attractive.

Our approach builds on the notion of the tunnel ID, which
is part of the PBB header of packets traversing the TNs and
determines the routing decisions. The tunnel ID in our design is
not tied to a single node sequence, but also involves alternative
routes towards the destination. We will be using the following
terminology in this section, scoped to a given tunnel:

• Path: Any node sequence beginning and terminating
at the source and destination ETN/IATN of the tunnel,
respectively (and comprising only TNs in-between).

• Primary path: The default path used by the tunnel in
the absence of link failures affecting it.

• Backup subpath: A node sequence beginning and ter-
minating at nodes in the primary path (not necessarily
the source/destination ETN/IATN), and featuring at
least one TN not present in the primary path.

• Backup path: A path including a backup subpath in
its node sequence.

Essentially, in the proactive failover procedure, whenever
a link in the primary path fails, a backup path allows the
flows using the tunnel to be rerouted through a backup subpath
beginning at the node which detected the failed link or at
a node preceding it in the primary path node sequence.
This process is transparent to tenants utilizing these tunnels
and even to the ETNs/IATNs communicating with them, and
minimizes delays and dropped packets.

One thing to note is that, in principle, load balancing
can take place for packets of a given tunnel ID, irrespective
of potential link failures. This can be seen as a form of
implicit failover. However, it does not deal with dropped
packets until the load balancing mechanism completely avoids
the malfunctioning path. Furthermore, centralized planning of
load balancing solutions is based on different assumptions and
guarantees with respect to planning failover mechanisms. In
what follows, we assume that, at any given instant, traffic of
a specific tunnel ID follows a unique path to the destination.

A. Proactive redundancy planning at the area controller

In general, the AC plans primary and backup paths for its
tunnels based on a combination of considerations, reflecting
its view of the network status and expected tunnel utilization.
In this work, we do not study the specifics of the AC’s policy
for selecting these paths. Instead, we make the simplifying
assumption that, for a given tunnel ID, the AC has already
calculated the primary path and the subset of TNs which will

be utilized for backup paths. Given this prior information, we
focus on the problem of defining generic rules which the AC’s
path planning policy should follow, in order to:

• Guarantee recovery from an arbitrary failure of any
single link in the primary path (given that all
ETN/IATN pairs in the area still remain connected).

• Prevent loops irrespective of the number of failures
that might take place.

To this end, we have identified two basic rules, which are
sufficient conditions for a policy to meet the above require-
ments, while incurring a relatively small increase in the number
of flow entries to be added in the transport nodes. To best
illustrate these rules, consider the example topology of Figure
4, scoped to a single tunnel which transfers packets from ETN
A to ETN B. In this topology assume that the primary path for
the tunnel is the sequence A → 1 → 2 → 3 → 4 → 5 → B.
The other TNs are only used for backup purposes.

The first rule is to only provision backup subpaths for
failures of links whose transmitting end is a node lying in
the primary path of the tunnel, and not a TN in backup
paths. For instance, if the link 2 → 3 fails, the subpath
2 → 6 → 4 is used to circumvent the failure. If, in addition,
the link 2 → 6 is found not to be working, then the subpath
2→ 1→ 7→ 8→ 5 is used. However, no backup paths exist
for this tunnel in case, for instance, links 6→ 4 or 7→ 8 fail.
Note that only providing a single backup solution (2→ 6→ 4)
would still satisfy the single link failure recovery guarantee.
The programming of the second failover subpath is thus not
strictly required; however, we have included such subpaths in
our design to make it even more robust.

The second rule is that whenever a backup subpath used
to circumvent a failure diverges from the primary path, it
may only remerge with it at a TN closer to the destination
ETN/IATN with respect to the transmitting end of the failed
link. For instance, if link 4 → 5 fails, TN 4 will not use
subpaths 4 → 6 → 2 or 4 → 3 → 2 → 6 → 4, because after
those diverge from the primary path they return to it at TNs
2 and 4 respectively, which are not closer to ETN B. Instead,
the subpath 4→ 3→ 2→ 1→ 7→ 8→ 5 will be used.

In order to support the full range of failover subpaths
complying with the above rules, there is a small extension
that needs to be made in the data plane. In some subpaths
packets may move backwards along the primary path, such
as in the subpath 4 → 3 → 2 → 1 → 7 → 8 → 5 in the
example. In order for this to work without potential loops, the
packet must be tagged with an identifier related to the node
that detected the failure, which we call failure identifier, or
F-ID for short. The header field holding the F-ID will only
be set to some nonzero value for backward moving packets.
It is tunnel-specific, thus its maximum value is the number of
hops in the primary path (e.g. only 3 bits are needed for 8-hop
paths). It could be part of the B-VID, for instance. The F-ID
will be matched by at most a single TN in the primary path.
For instance, in Figure 4, if link 4→ 5 fails, the F-ID makes
sure that the subpath 2→ 6→ 4 is not used to redirect these
packets (something that would create a loop).

Fig. 4: Example topology to illustrate proactive failover rules.

B. Runtime failover procedure

In this subsection, we elaborate a little further on the
required TN operations for supporting our failover approach,
and describe the structure of the TN flow tables. To facilitate
comprehension, we will describe the process for a single tunnel
in an area, the one illustrated in Figure 4. In Figures 5-8 we
depict the flow table structure for TNs 1 and 2 for this tunnel.

Whenever a TN in the primary path of a tunnel receives a
packet, it checks whether the F-ID is set. If not, then pipeline
processing moves to the group table, and specifically to a group
of fast failover (FF) type whose first action is to forward the
packet to the next TN along the primary path. The FF table has
a built-in mechanism to check the state of the incident links
associated with the actions in each action bucket. Thus, it may
detect that its default outgoing link for packets of that tunnel
ID is malfunctioning. In this case, if a subpath leading to a
TN closer to the destination ETN exists, then a corresponding
rule installed in this table redirects the packet to a backup
TN. Otherwise, the TN sets the F-ID of packets belonging to
this tunnel to a value declaring its own identity in the tunnel
context, and forwards the packets back to the incoming port.

Now assume a TN in the primary path receives a packet
with the F-ID set to a nonzero value. If the AC has installed a
rule in this TN for it to redirect packets with this F-ID towards
a backup node, then the F-ID is cleared and the forwarding
action is applied. Otherwise, the packets are forwarded to the
preceding TN in the primary path, retaining the F-ID.

Finally, consider a TN not in the primary path. This is the
simplest case, as this TN will simply forward packets towards
the next hop according to a flow entry installed by the AC. If
such a TN detects a failure of the outgoing link for this tunnel,
no backup path exists, and the packet is dropped.

There is a subtlety related to efficiency when packets are
moving backwards. Ideally, whenever a TN receives a packet
with a nonzero F-ID and it has a suitable subpath to reroute
packets with this F-ID, we would also like this TN to reroute
untagged packets of the same tunnel through this subpath,
in order for them to avoid an unnecessary forth and back
trip. However, this cannot be simply implemented with the
OpenFlow fast failover group table. It requires retaining state
at TN level (not packet tags). In this case, the above procedure
should be extended with the TN sending the first tagged packet
it matches also towards its LA. The latter will update the flow
entry for untagged packets, in order to match the one with
tagged packets. This incurs an added delay for the untagged
packets received in the meantime, which is however small
compared to waiting for the reaction of a remote AC.

C. Assessment of the amount of added flow entries

The number of rules installed in the TNs affects the
FIB delay. Also, if this number grows excessively, low-end

Match Action
tun=AB, F-ID=0 Group AB.1
tun=AB, F-ID=2 Group AB.2
tun=AB, F-ID=4 Group AB.2
tun=AB Fwd A

Fig. 5: Rule table for TN 1

Group Type Action Buckets
AB.1 FF Fwd TN2

Fwd TN7
F-ID←1, Fwd A

AB.2 FF Fwd TN7
Fwd A

Fig. 6: Group table for TN 1

Match Action
tun=AB, F-ID=0 Group AB.1
tun=AB, F-ID=3 Group AB.2
tun=AB Fwd TN1

Fig. 7: Rule table for TN 2

Group Type Action Buckets
AB.1 FF Fwd TN3

Fwd TN6
F-ID←2, Fwd TN1

AB.2 FF Fwd TN6
Fwd TN1

Fig. 8: Group table for TN 2

switching elements might not be able to store such amounts.
Our proactive approach requires new flow entries to be stored
at TNs which are not in the primary path of a tunnel, but have
been selected as parts of backup subpaths. In addition, failover
flow entries have to be installed in TNs along the primary path.
The maximum number of flow entries depends on the size of
the area, the proportion between ETNs/IATNs and TNs, the
area topology, and the AC’s path planning policy.

In order to assess these numbers, we consider random
network “Small-world” topologies of TNs and ETNs/IATNs,
where each TN is connected in average with 4 other TNs, and
vary both their total number and their proportion. We are also
interested in assessing the relative increase with respect to the
pure reactive failover case, where no redundant flow entries are
used. The assessment has been done with use of the R toolkit,
and we have used shortest path routing. The simulation results
are depicted in Figure 9. We show the maximum number of
flow entries required in each TN for different network sizes
(10, 30 and 50 TNs). The number of ETNs/IATNs varies
between 20% and 100% of the number of TNs.

The “Upper bound” plot corresponds to the maximum
theoretical number of flow entries in an TN, if every flow
were using all network TNs (ignoring backup entries). In this
case, if N is the number of ETNs/IATNs in the network,
each TN would have N · (N − 1) flow entries. This bound
is loose in practice; our simulations show that the real number
of flow entries required is much lower, indicated by the
plot “Susceptible to link failures”. Our proposed policy for
resilience to single-link failures increases the number of flow
entries in the TNs. However, the fact that we do not provide
guarantees for multiple failures (which would require backups
of backups and so on) allows us to keep this increase in
moderate levels, as we can see in the figure. Also note that even
for the most demanding scenario we examine, the maximum
number of entries remains below typical capacities of low-end
switching elements, estimated at around 2000 entries [7].

2 4 6 8 10

0
20

40
60

80

"Small-world" network with 10 TNs
(each TN is in avg. connected with 4 TNs)

of ETNs/IATNs

M
ax

 fl
ow

 e
nt

rie
s

at
 e

ac
h

TN

Susceptible to link failures
Resistant to link failures
Upper bound

(a) ”Small-world” network with 10 TNs.

10 15 20 25 30

0
20
0

40
0

60
0

80
0

"Small-world" network with 30 TNs
(each TN is in avg. connected with 4 TNs)

of ETNs/IATNs

M
ax

 fl
ow

 e
nt

rie
s

at
 e

ac
h

TN

Susceptible to link failures
Resistant to link failures
Upper bound

(b) ”Small-world” network with 30 TNs.

10 20 30 40 50

0
50
0

10
00

15
00

20
00

25
00

"Small-world" network with 50 TNs
(each TN is in avg. connected with 4 TNs)

of ETNs/IATNs

M
ax

 fl
ow

 e
nt

rie
s

at
 e

ac
h

TN

Susceptible to link failures
Resistant to link failures
Upper bound

(c) ”Small-world” network with 50 TNs.

Fig. 9: Analysis on the maximum number of flow entries required in the TNs.

V. RELATED WORK

Virtualization and tunneling techniques have traditionally
been explored in the context of data centers. VL2, an early
approach proposed in [8], does not provide full address virtu-
alization. Instead, the full IP address space is partitioned into
Locator Addresses, used by physical infrastructure switches,
and Application Addresses, used by tenant VMs. Unlike VL2,
Netlord [9] is a system that provides full L2 and L3 address
virtualisation, meaning that tenants can use overlapping L2
and L3 address spaces, as we also do in our approach.
Our scheme is similar to VXLAN, which is a standardized
encapsulation mechanism [10] that enables virtualization of
layer two segments. Similar to the MAC address space ID
(MACASID) in Netlord, VXLAN defines a VXLAN Network
ID (VNI) representing a L2 broadcast domain.

The topic of fast failover has gained new interest in recent
years, following the SDN trend, and especially the capabilities
offered by recent versions of the OpenFlow protocol. In
[11] a new language for fault-tolerant networks programs is
presented, called FatTire, which allows SDN programmers to
specify failure-recovery policies. The FatTire compiler takes
programs specified in terms of paths and translates them to
OpenFlow switch configurations that automatically respond
to link failures without controller intervention. In [12] some
failover implementations for OpenFlow are proposed which
ensure connectivity as long as the underlying physical network
remains connected. The solutions involve tagging, without
which fast failover mechanisms are severely limited, as it has
been shown in [13]. The price to be paid for the ultimate
connectivity guarantee provided by [12] is a large overhead
in terms of tag bits. In contrast, in our work we provide
more moderate guarantees, namely recovery of any single link
failure, but manage to keep the overhead at very low levels.

VI. CONCLUSION

We presented an Openflow-based implementation for the
basic functionalities of a control plane area in the 5G-XHaul
architecture. Our design targets in providing robustness and
efficiency. We have thus tried to minimize the amount of flow
entries to support the required operations. Future extensions
of our work will focus on QoS support at the transport nodes
and its implications in designing efficient policies.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 671551. The European Union and its agencies
are not liable or otherwise responsible for the contents of this
document; its content reflects the view of its authors only.

REFERENCES

[1] “5GPPP architecture working group, View on 5G architecture,”
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-5G-
Architecture-WP-For-public-consultation.pdf.

[2] “5G-XHaul project,” http://www.5g-xhaul-project.eu/.
[3] “5G-Xhaul project, deliverable 2.4: Network topology definition,” Jan-

uary 2017.
[4] S. Salam and A. Sajassi, “Provider backbone bridging and MPLS: com-

plementary technologies for next-generation carrier ethernet transport,”
IEEE Communications Magazine, vol. 46, no. 3, 2008.

[5] D. C. Mur, P. Flegkas, D. Syrivelis, Q. Wei, and J. Gutiérrez, “5g-xhaul:
Enabling scalable virtualization for future 5g transport networks,” in
Ubiquitous Computing and Communications and 2016 International
Symposium on Cyberspace and Security (IUCC-CSS), International
Conference on. IEEE, 2016, pp. 173–180.

[6] “5G-Xhaul project, deliverable 3.1: Analysis of state of the art on scal-
able control plane design and techniques for user mobility awareness.
definition of 5G-XHaul control plane requirements,” March 2016.

[7] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “Past: Scalable
ethernet for data centers,” in Proceedings of the 8th international
conference on Emerging networking experiments and technologies.
ACM, 2012, pp. 49–60.

[8] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, and
S. Sengupta, “VL2: a scalable and flexible data center network.” ACM
SIGCOMM computer communication review, vol. 39, no. 4, pp. 51–62,
2009.

[9] “NetLord: a scalable multitenant network architecture for virtual-
ized datacenters.” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 62–73, 2011.

[10] “Virtual eXtensible Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3 Networks, RFC
7348.”

[11] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: Declarative
fault tolerance for software-defined networks,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013, pp. 109–114.

[12] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: Introducing openflow graph algorithms,”
in Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014, pp. 121–126.

[13] M. Borokhovich and S. Schmid, “How (Not) to Shoot in Your Foot with
SDN Local Fast Failover,” in International Conference On Principles
Of Distributed Systems. Springer, 2013, pp. 68–82.

