
A Demonstration of Multirate Multicast Over an

802.11 Mesh Network

Georgios S. Paschos∗‡, Chih-Ping Li∗, Eytan Modiano∗, Kostas Choumas§ and Thanasis Korakis§

∗LIDS, Massachusetts Institute of Technology, Cambridge, MA, USA
§Dept. of ECE, University of Thessaly, Volos, Greece
‡Informatics & Telematics Institute, CERTH, Greece

Abstract—This demo presents a novel multirate multicast
scheme for video delivery to wireless users. We demonstrate an
adaptive scheme that combines differential backlog scheduling
and intelligent packet dropping, both based on local information.
An important feature of this scheme is that it does not require
centralized calculations. We focus on 802.11 mesh networks and
we show that our solution copes efficiently with the volatile nature
of the wireless medium. We demonstrate how a video multicast
from a single point to multiple receivers could utilize layered
multimedia coding techniques to adapt efficiently users’ perceived
quality to their allowable data rates.

I. INTRODUCTION

We demonstrate Maximum Multicast Utility for Wireless
(MMU-W) policy, a multicast algorithm for delivering multi-
media streams to multiple users across a wireless mesh net-
work. Since different receivers may require different data rates,
we study in [1] the problem of per receiver network utility
maximization in multirate multicast, where each receiver is
assigned a potentially different utility function. The presented
solution combines backpressure-type scheduling with intelli-
gent threshold-based packet dropping at intermediate nodes
to optimally solve this problem. Packets corresponding to all
stream layers are initially injected into the network without
any calculations, which makes the approach very lightweight
and hence desirable for wireless systems. Progressively, some
packets are dropped according to a dropping scheme which
bases its decisions on local information. We combine the
above with receiver-end flow control to produce a scheme
that maximizes utility without source cooperation. We show
that the original stream is stripped of unnecessary packets so
that each receiver obtains the exact amount of information that
corresponds to maximum aggregate utility. The routing of each
session is based on a fixed multicast tree. Next, we propose
the main outlines of the MMU-W policy.

Each node maintains one transmission and one drop queue
for each outgoing link and multicast session. Since the injected
video rate might be higher than the wireless link capacity,
our algorithm may need to discard some packets. Following
a decision to discard a packet, the packet is first moved to
the drop queue before it is ultimately discarded. The time
is virtually slotted at every node, although the nodes are not
assumed to be synchronized. During each slot the following
actions are performed at each node:

• Scheduling: Each node chooses one of its outgoing links to
activate and allocates the whole rate of this link to a session,
in a way that this link-session choice features the maximum
product of link rate and weighted differential backlog.

• Packet Dropping: A predefined number of packets is moved
from each transmission queue to its corresponding drop queue,
if the former is longer than the latter one. Then, the drop
queue removes the same amount of packets from the network,
if it exceeds a predefined threshold. This process protects the
backlogs from overflowing while at the same time it is used
to optimize long-term average flow rates.
• Receiver-End Flow Control: Each destination features a
pressure that is the length of a virtual queue, which indicates
the urgency of the particular receiver to obtain more or
less packets according to its utility. This pressure affects the
scheduling decisions, so that a destination with high positive
pressure is very unlikely to receive new packets.

II. DEMONSTRATION SETUP

To demonstrate the practicality of the MMU-W policy, we
develop a prototype implementation in NITOS testbed [2].
NITOS is a heterogeneous outdoor testbed, where two types of
networks are used: a wireless network with IEEE 802.11a/b/g/n
protocol and a wired network using Gbit Ethernet. Being partly
deployed in a building roof, NITOS is a non-RF-isolated wire-
less testbed. To eliminate interference we employed 802.11a,
which is not used by commercial 802.11 products in Greece.
The NITOS nodes feature a 3.4GHz Intel i7 processor and two
Atheros wireless cards.

The implementation is based on the Click Modular router
framework [3]. Click facilitates experimentation and evaluation
of scheduling and flow control algorithms in real systems. It
runs as a user-level daemon at each node and via the libpcap
library it provides full control on packet transmission. Our
implemented framework includes mechanisms for estimating
channel quality, forming a queue structure, exchanging queue
backlog information, and splitting time into virtual slots.

• Estimating Channel Quality. To evaluate channel quality, we
adopted the ETT estimation algorithm of Roofnet [4]. Nodes
periodically broadcast probes which are used to estimate the
successful transmission probability. With this process every
node periodically obtains a table with the qualities for each
channel rate/neighbor pair. This mechanism is known to incur
negligible throughput overhead [4].
• Queue Structure. We implement the transmission queues on
each node and we create counters for the drop and virtual
queues that indicate their lengths. Each node utilizes multiple
transmission queues for packet storage, one per each couple
of session and outgoing link. The counter of the virtual
queue may take non-integer values. Each of these internal
queues/counters is created upon the arrival of the first packet
of a new session.

2

Fig. 1: Experiment topology with five NITOS nodes. Two
sessions A and B are generated at Alice, forwarded to Bob via
a wired connection, and then distributed to Carol, Dave, and
Erin through wireless. The Figure shows the rate requirement
per receiver (in parentheses) and the physical rate per link.

• Exchanging Queue Backlog Information. To compute the
differential backlogs, each node broadcasts periodically the
backlog size of all its transmission queues. If a node is a
destination for some session, it also broadcasts the backlog
size of its virtual queue. The broadcast messaging is repeated
once every second. Prior experiments suggest that more fre-
quent broadcasts incur visible throughput overhead, while rarer
broadcasts may affect the delay performance due to obsolete
queue information.
• Virtual Slots. Each node keeps an internal timer that expires
once every slot. Upon counter expiration the policy selects the
next queue to be served and for the duration of the next slot the
decision remains fixed. The slot duration is set to 100msecs,
equal to 1/10 of the broadcasts period. Small values for the
slot duration improve delay and reduce throughput fluctuations
but burden the CPU of the device.

III. DEMONSTRATED SCENARIOS

We conduct experiments on the specific topology of Figure
1. Five NITOS nodes are used: Alice and Bob are connected
via Ethernet while Bob is connected to the other three nodes
via wireless. The nodes are configured to run the MMU-W
policy. The wireless links use fixed physical rates instead of
the 802.11 rate adaptation scheme. In particular we set the
physical rates to 18Mb/s, 6Mb/s and 6Mb/s for the links to
Carol, Dave, and Erin respectively. The physical rate of the
wired connection is 1Gb/s.

We consider two sessions, A and B, each with traffic rate
14Mb/s. The source node for both sessions is Alice and the
multicast receivers are {Bob, Carol} for A, and {Dave, Erin}
for B. To generate packets we use two UDP streams created
with the Iperf tool [5]. We run the Iperf tool on external nodes
to avoid polluting the CPU measurements. The receiver rate
requirements are 4.5Mb/s for Bob, ξCMb/s for Carol, 1.7Mb/s
for Dave and ξEMb/s for Erin, where the values ξC, ξE are
chosen differently per experiment. The objective is to satisfy
all receiver rate requirements as well as achieve maximum
throughput.

In Figures 2 and 3, we show the measured instantaneous

0 100 200 300 400 500

0

2

4

6

8

10

12

14

16

18

20

instantaneous

time (sec)

Carol

Dave

Erin

0

2

4

6

8

10

12

14

average

Bob Carol Dave Erin

Requirement

Throughput

Fig. 2: Scenario 1: (ξC, ξE) = (2.8, 1.7). Instantaneous and
average throughput (Mb/s) are shown.

0 100 200 300 400 500

0

2

4

6

8

10

12

14

16

18

20

instantaneous

time (sec)

Carol

Dave

Erin

0

2

4

6

8

10

12

14

average

Bob Carol Dave Erin

Requirement

Throughput

Fig. 3: Scenario 2: (ξC, ξE) = (1.7, 2.8). Instantaneous and
average throughput (Mb/s) are shown.

and average throughput for two scenarios. The instantaneous
throughput is computed as the average over 1sec periods. In
the first scenario we choose (ξC, ξE) = (2.8, 1.7), see Figure
2. The objective is achieved because all receiver requirements
are satisfied and the excess wireless resource is allocated to the
receiver with the highest capacity, i.e. Carol. We observed that
the wireless medium was fully utilized. In the second scenario,
we reverse the requirements of Carol and Erin, (ξC, ξE) =
(1.7, 2.8), see Figure 3. The theoretical total throughput is
smaller in this case due to Erin’s low physical rate and high
requirement. We observe the user-level CPU occupancy using
the vmstat command. The occupancy is 8-10% for the whole
duration of experiments, which is encouraging. The CPU usage
was the same at all nodes, indicating that our policy does not
incur extra burden on the sources. Additionally, it was largely
independent of data rates used, which implies that packet
operations and queue maintenance have a minor contribution
to the CPU occupancy.

REFERENCES

[1] G. S. Paschos, C.-P. Li, E. Modiano, K. Choumas, and T. Korakis,
“Multirate Multicast: Optimal Algorithms and Implementation,” IEEE

Infocom, 2014.

[2] “NITLab: Network Implementation Testbed Laboratory,” http://nitlab.inf.
uth.gr/NITlab/index.php/testbed.

[3] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The Click
modular router,” ACM SOSP, 1999.

[4] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and
Evaluation of an Unplanned 802.11b Mesh Network,” MobiCom, 2005.

[5] “Iperf: The TCP/UDP Bandwidth Measurement Tool,” http://sourceforge.
net/projects/iperf/.

