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Abstract—This paper proposes distributed load shedding poli-
cies for regulating excessive network load. Data packets are
inserted into the network to be delivered to intended destinations.
The intermediate network nodes may decide to forward or
shed some packets depending on temporally available resources.
It is possible for some packets to traverse several nodes in
the network until they are finally dropped before reaching the
destination, which exacerbates energy consumption. We define a
multi-objective optimization problem where we aim to minimize
the used energy subject to providing maximum sum throughput.
For the case of single-path unicast sessions, we show that Energy-
efficient Distributed Load Shedding (E-DLS), a simple shedding
mechanism combined with pushback routing, solves this load
shedding optimization. We implement E-DLS in a testbed and
use the experiments to select policy parameter values that
strike a good balance between energy and delay performance.
We then propose a heuristic extension of E-DLS for multirate
multicast routing, and showcase via testbed experiments its
optimal performance.

I. INTRODUCTION

Networks employ congestion control in order to regulate

the network load, prevent overload, and ultimately improve

the Quality of Service delivered to users. In applications

such as mobile ad hoc networks and datacenter networks,

dynamic congestion controllers have been proposed to solve

optimally the Network Utility Maximization (NUM) problem

[1]. When the network resource allocation is decided by the

backpressure mechanism [2], a simple queue-based congestion

control mechanism can be implemented at every source [3].

More recently, it was shown that congestion control can also

be performed without source cooperation, by a combination

of routing, packet shedding, and receiver congestion feedback

[4]. Data packets enter the network without regulation, while

the network reacts by shedding excess load to maximize the

utility of the ultimately received traffic. In such a distributed

load shedding approach, the congestion control happens inside

the network, and there are no specified nodes responsible for

performing it. This approach is desirable for many applications

since it provides network protection from misbehavior or ma-

licious sources, and simplifies the congestion control decisions

in a large network. Load shedding has been successfully

applied to data stream systems such as very large databases

and information collection and computation systems [5]. In

the special case of throughput maximization (corresponds to

linear utility functions), the receiver-based congestion control
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Fig. 1. An example of an overloaded network where distributed load shed-
ding (top) may consume more energy than source-based congestion control
(bottom). We propose a novel load shedding mechanism which minimizes
energy usage by adjusting real-time shedding decisions.

of [4] reduces to a simple mechanism where each node sheds

packets if its backlog exceeds a certain threshold.

Although the load shedding approach yields the same

throughput as the source-based congestion control, it may lead

to excessive energy consumption. Some packets may traverse

several network nodes before they are eventually dropped, and

thus the energy used for their transmissions is wasted. In the

example of Fig. 1, under the threshold shedding mechanism

of [4] (shown on top), the excess load is shed at the last

node. This approach is equivalent in terms of throughput to

the source-based approach. However, in terms of consumed

energy is clearly worse. This requires 15 transmissions per

packet delivered on average, as opposed to the source-based

congestion control solution (bottom) which only requires 3
transmissions. Since modern network devices turn on/off the

network interface cards to save power [6], the consumed

energy is roughly proportional to the time the cards need to

be active. In an ad hoc network, nodes often spend most of

their energy on communication [7]. Hence for this example,

the system consumes roughly five times more energy when

shedding the load in a distributed way, which is a heavy price

for implementing load shedding in a distributed way. In this

paper we propose a novel distributed load shedding scheme

which minimizes the energy expenditure subject to achieving

maximum sum throughput.

We study a multi-objective load shedding optimization prob-

lem, where we aim to minimize the energy usage measured

in number of transmissions, subject to maintaining maximum

sum throughput. First, we focus on single-path unicast ses-

sions and show that E-DLS, a simple distributed shedding

policy combined with pushback routing, approximately solves

the above optimization. Similarly to [4], E-DLS performs

threshold-based shedding, but in our case the threshold at a

node depends on its hop count distance from the destination.

We implement E-DLS in a testbed, and demonstrate by ex-
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periments how the internal parameters affect the energy usage

and the average delay. It adapts to changing conditions, such

as arrival rate and channel quality. It can be implemented in a

distributed fashion, it is highly scalable since it relieves sources

from heavy computations, and it yields deterministic bounds

for the queue backlogs facilitating implementation on systems

with finite buffers, and providing delay guarantees. Since every

network node is capable of shedding excessive load, E-DLS

provides a natural shielding against overload.

We extend our study to multirate multicast and propose

heuristic extensions for E-DLS in this case. For multirate mul-

ticast, source-based congestion control is insufficient, hence

our approach is the only solution that combines maximum

throughput with minimum energy.

Our contributions can be summarized as follows:

• We formulate a multi-objective load shedding optimiza-

tion problem whose solution yields minimum number of

transmissions subject to maximum sum throughput.

• We prove that a simple online shedding mechanism

combined with pushback routing approximates the above

offline optimization. Unlike prior work [4], this approach

does not use virtual queues and thus it is simpler to

implement in any real system.

• We implement our proposed policy in a testbed and study

how energy-delay tradeoffs depend on policy parameters.

• We propose heuristic extensions for multirate multicast.

A. Related Work

Congestion control is used in communication networks

to regulate network load, avoid congestion phenomena such

as unexpected buffer overflow and congestion collapse [8],

and improve the utilization of network resources. The most

commonly known congestion control mechanism is that of

the Transmission Control Protocol (TCP) [9]. This mechanism

adapts the rate of each session at its source by changing the

number of packets to be injected into the network based on

network congestion. Following its prevelence as the standard

Internet congestion control mechanism, it was later theo-

retically understood that the TCP mechanism (under some

simplified assumptions) provides fair per-session delays [10].

More generally, the congestion control can be formulated as an

optimization problem, called NUM, where a concave function

of packet transmission rates is maximized using regulators at

the sources [11]. By choice of an appropriate concave function

we may achieve different targets such as to maximize sum

throughput or achieve a fairness condition such as max-min

fairness [12], or proportional fairness [13].

More recently congestion control was studied jointly with

dynamic routing and scheduling under stochastic arrivals [3].

It was shown that the long-term average rate optimization

(called stochastic NUM) can be solved by deciding locally

in time how many packets to inject at each source. The

optimal network control policy combines backpressure routing

and scheduling with a source-based congestion controller that

decides on how many packets to inject by comparing the utility

function of the particular source with the observed source

queue backlog, an indication of network congestion. This is a

highly desirable congestion control scheme since it can solve

the NUM problem in an online, distributed, and adaptive way.

The previous works all refer to source-based congestion

control, where the sources decide how many packets should

be injected into each source in the network. There are several

issues that source-based congestion control might face. The

sources may misbehave in which case the network becomes

susceptible to overloading. The same situation may arise in

networks where regulating the sources is difficult, for example

consider the flash crowd scenario. Then malicious attacks such

as distributed denial of service attacks may occur. For these

reasons [14] proposes congestion control at the receiver side.

In this work all network nodes can decide to shed packets

when needed, while utility maximization is enforced by signals

sent by the receivers in the form of values of virtual queues.

This was extended in [15] where a receiver-based congestion

control mechanism is proposed for multicast sessions. The

proposed scheme solves the multi-receiver NUM. A parallel

line of research involves the Distributed Load Shedding (DLS)

techniques [16]. Load shedding has been proposed in the

database community as a means of rejecting excess load that

has been already introduced into the system. An incredible

achievement of receiver-based congestion control and DLS is

that the network load is regulated in a distributed manner and

yet the optimal behavior can be obtained.

A common feature of receiver-based congestion control and

DLS is the fact that a packet or job may travel through the

system and hence consume resources only to be dropped at

latter stage. This phenomenon may exarcebate energy con-

sumption, which is not taken into account in the formulation

of congestion control optimization. As shown in the example

of Figure 1, this can result in great amounts of wasted energy

in the form of transmissions which are not useful. In this

paper we extend the above works by considering a multi-

objective optimization where we minimize the energy required

to achieve maximum network utility. In our work, not only the

NUM is solved without source cooperation, but additionally

we make sure that the majority of packets/jobs are dropped

in an economical way. Equivalently, our algorithms make sure

that the wasted transmissions are minimized.

II. NETWORK MODEL

We consider a network with prespecified single-path routing

and multiple unicast sessions, which are defined as source-

destination pairs. This network model demonstrates adequately

the important notions involved in our problem, while in

Section V we extend our model for multicast routing. Our

network consists of nodes in the set N and directional links

in the set L, where each link (n,m) ∈ L represents a

communication channel between nodes n,m. In the analysis

we consider a wireline network in which all links in L can

be used simultaneously. Packets belong to a set of sessions

C, where session c ∈ C packets are generated at the source

sc and follow a specified path P (c) to the destination δc. We

assume slotted time; in slot t, A(c)(t) session c packets are

generated at sc, where A(c)(t) are random, bounded above by

Amax, and i.i.d. over time with mean λ(c).
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With the exception of destinations, each node n maintains

a queue for every session c, whose backlog at the beginning

of slot t is denoted by Q
(c)
n (t). Let (·)+ , max(·, 0), we may

express the evolution of Q
(c)
n (t) as

Q(c)
n (t+ 1) ≤

[(

Q(c)
n (t)− µ(c)

n (t)
)+

− d(c)n (t)

]+

+ µ
(c)
p(n)(t),

∀n ∈ P (c) ∩N \ {δc}, c ∈ C, (1)

where µ
(c)
n (t) is the number of packets to be routed from

n to the next node on path P (c)1, d
(c)
n (t) is the number of

packets to be dropped, and p(n) is the incoming neighbor

node (parent) of n. Hence, µ
(c)
p(n)(t) is an upper bound to the

number of session c packets arriving at n. In the special case

where n = sc, we have by convention that µ
(c)
p(n)(t) = A(c)(t).

Moreover, for the simplicity of our notation, we assume that

Qδc(t) = 0.

In slot t, our queueing mechanism at node n works as

follows. Newly arrived session c packets are added to backlog

Q
(c)
n (t). A distributed control policy chooses the values of

the decision variables µ
(c)
n (t) and d

(c)
n (t) for all sessions. In

particular, each node n determines the number µ
(c)
n (t) of class

c packets transmitted on its outgoing link on path P (c), as well

as the number d
(c)
n (t) of packets that are dropped from queue

Q
(c)
n (t) at slot t. However, the real numbers of the transmitted

and dropped packets are µ̃
(c)
n (t) and d̃

(c)
n (t) respectively, since

they depend on the backlog availability and they are less

or equal to the decision variables µ
(c)
n (t) and d

(c)
n (t). For a

decision to be admissible, the capacity constraint over link

(n,m) must be satisfied
∑

c∈C:(n,m)∈P (c)

µ(c)
n (t) ≤ Rnm, ∀(n,m) ∈ L,

where Rnm is the capacity of link (n,m), and the summation

is over all sessions that may transmit over link (n,m). For

technical reasons, we limit the maximum number of per-

missible drops to d
(c)
n (t) ≤ dmax, where dmax is a system-

defined parameter. Throughout the paper, we assume dmax ≥
Amax + max(n,m) Rnm. Since Amax + max(n,m) Rnm is an

upper bound to the incoming data rate to a node, our choice

of dmax ensures that the packet shedding rate is large enough

to allow queue stabilization.

The purpose of this paper is to propose distributed policies

for determining the variables µ
(c)
n (t) and d

(c)
n (t) at every slot,

so that the long-term average performance of the system, as

measured by throughput and energy metrics, is optimized.

III. MINIMIZING ENERGY CONSUMPTION UNDER

MAXIMIZED SUM THROUGHPUT

In order to introduce the concepts, we begin by considering

the problem of minimizing the total energy consumption under

maximum sum throughput of all receivers in multiple sessions.

1Path P (c) is a sequence of nodes and links, hence we write n ∈ P (c)

and (n,m) ∈ P (c) to mean that node n and link (n,m) are in this path.

A. Flow-Level Analysis

To design an optimal online policy, it is useful to first

characterize the flow-level system performance. We define q
(c)
n

to be the rate of dropped packets of session c at node n, and

f
(c)
n the rate of forwarded packets to the outgoing link. The

rate of received session c packets by destination δc is called

throughput, and it is denoted by r(c). Since packets follow a

single path, we have

r(c) = f
(c)
p(δc)

, ∀c ∈ C. (2)

For an arrival rate vector λ = (λ(c)), we say that a throughput

vector is feasible if and only if there exist non-negative

variables f
(c)
n , q

(c)
n such that conditions (3)-(4) are satisfied:

f
(c)
p(n) = q(c)n + f (c)

n , ∀n ∈ P (c) ∩N \ {δc}, c ∈ C, (3)
∑

c:(n,m)∈P (c)

f (c)
n ≤ Rnm, ∀(n,m) ∈ L, (4)

where by convention fp(sc) = λ(c). Equations (3) capture flow

conservation and inequalities (4) capture capacity constraints.

Let Λλ be the set of all feasible throughput vectors r = (r(c)).
We have Λλ = {r | (2) - (4)}. We define T ∗ to be the

maximum sum throughput of all sessions, which is given by

the following problem.

Sum Throughput Maximization:

T ∗ , max
r∈Λλ

∑

c∈C

r(c). (5)

Summing up (2) over all sessions and using (3) we see that

the sum throughput is equal to the total arrived traffic less the

sum of shedding rates
∑

c

r(c) =
∑

c

λ(c) −
∑

c,n

q(c)n , (6)

where the index in the summations hereinafter is a shorthand

form of c ∈ C and n ∈ P (c) ∩ N \ {δc}. Therefore, for any

fixed λ, problem (5) is equivalent to

Sum Shedding Minimization:

Q∗ , min
f ,q≥0

∑

c,n

q(c)n , subject to (3) - (4),

where f = (f
(c)
n ) and q = (q

(c)
n ) are the flow and the shedding

rates respectively.

B. Problem Statement

As illustrated in Fig. 1 using flows, problem (5) admits

multiple optimal solutions, where each solution has potentially

different performance with respect to the required number

of transmissions and hence energy used. Motivated by this,

we focus on minimizing the average number of transmissions

required to achieve maximum sum throughput. Since the most

energy-expensive process for a device is often the transmis-

sion/reception process, we effectively minimize the average

consumed energy.

Minimizing the average number of transmissions can be

achieved by minimizing the total flow across all links
∑

c,n f
(c)
n . Therefore our multi-objective can be expressed in
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flow-level by the following optimization.

Energy Minimization s.t. Maximum Sum Throughput:

E∗ = min
f ,q≥0

∑

c,n

f (c)
n , s.t.

∑

c

r(c) = T ∗ and (2) - (4), (7)

where E∗ is the minimum energy measured in terms of rate

of transmissions and T ∗ is the maximum value of (5).

Next, we exploit the assumption of single-path routing to

simplify the problem and pose it in terms of shedding rates.

Denote with U (c)(n) ⊂ P (c) the set of upstream nodes of n
on path P (c), including n. Then, using the flow conservation

constraints (3) we have
∑

c,n

f (c)
n =

∑

c,n



λ(c) −
∑

k∈U(n)

q
(c)
k



 . (8)

Let h
(c)
n be the hopcount from node n to the destination δc,

e.g. h
(c)
p(δc)

= 1. By enumerating links in two different ways

we have the following identity
∑

n

∑

k∈U(n)

q
(c)
k =

∑

n

h(c)
n q(c)n , ∀c ∈ C,

which combined with (8) leads to
∑

c,n

f (c)
n =

∑

c

N (c)λ(c) −
∑

c,n

h(c)
n q(c)n , (9)

where N (c) , |P (c) ∩ N| − 1 is the number of nodes on the

path P (c) except for the destination. Since the arrival term

above is constant, using (6), we conclude that in the case of

multiple unicasts with single path routing, (7) is equivalent to

Maximum Weighted Shedding s.t. Minimum Sum Shedding:

max
f ,q≥0

∑

c,n

h(c)
n q(c)n , s.t.

∑

c,n

q(c)n = Q∗ and (3) - (4). (10)

We further relax the minimum sum shedding constraint of (10)

to obtain

max
f ,q≥0

(
∑

c,n

h(c)
n q(c)n −K

(
∑

c,n

q(c)n −Q∗

))

, s.t. (3) - (4),

(11)
where K > max(c,n) h

(c)
n is a positive parameter. Consider

the positive weights α
(c)
n (K) , K − h

(c)
n defined for nodes

on paths P (c). We obtain the equivalent problem

Weighted Shedding Minimization:

min
f ,q≥0

∑

c,n

α(c)
n (K)q(c)n , s.t. (3) - (4). (12)

By letting K → ∞, any solution of (12) converges to some

solution of (10) (see the penalty method in [17, §4.2]). This

also provides an optimal solution for our desired problem

(7), i.e., it minimizes the energy used to achieve maximum

sum throughput. Summarizing our flow-level analysis, we

conclude that the “energy minimization subject to maximum

sum throughput” problem of interest can be turned into a

weighted shedding minimization problem for the case of

single path unicast. In the following section we use the queue

shedding analysis to design an online policy.

C. Packet-Level Control

We develop an online control policy that chooses instan-

taneous routing µ
(c)
n (t) and shedding d

(c)
n (t) to yield a good

time average performance. Below we make precise what we

mean by “good time average performance”. We study the time

averages of µ̃
(c)
n (t), ∀n ∈ P (c) \ δc, c ∈ C, and we assume

that under our policy they converge. We define the average

sum throughput of our scheme as

T̂ , lim
τ→∞

1

τ

τ−1∑

t=0

∑

c

E[µ̃
(c)
p(δc)

(t)]. (13)

In (13) we take the time average of the expected received

packets at all receivers
∑

c E[µ̃
(c)
p(δc)

(t)] over a time period of

τ slots and then let τ grow large. In a similar fashion, the

average number of total transmitted packets in the network is

Ê , lim
τ→∞

1

τ

τ−1∑

t=0

∑

c,n

E[µ̃(c)
n (t)]. (14)

We wish to develop a control policy that drives these limits to

be equal to the flow-level variables T ∗, E∗ from (7).

We will use the drift-plus-penalty method from the theory

of Stochastic Optimization [18]. This is a technique used

for stabilizing a queueing network while also minimizing the

time average penalty function. In every slot t, the queue

backlogs are observed and control actions are taken to greedily

minimize a bound on the drift-plus-penalty expression ∆(t)+
V π(t). The drift ∆(t) , E[L(t+1)−L(t)|Q(t)] is determined

using a quadratic Lyapunov function L(t) = 1
2

∑

c,n[Q
(c)
n (t)]2,

which is a scalar measure of the queue backlog vector Q(t) =

(Q
(c)
n ). Because of the squares, minimizing the drift requires

reducing the large backlogs. For the penalty function, driven

from (12) we choose

π(t) =
∑

c,n

α(c)
n (K)E[d(c)n (t)|Q(t)].

Observe that the two goals are conflicting. We can choose a

large d
(c)
n (t) to shed many packets and reduce the backlog

Q
(c)
n hence reducing ∆(t), but this increases the penalty π(t),

and vice versa. Last, the positive parameter V controls the

preference between reducing backlogs or reducing shedding

penalties. We investigate the role of V in detail in Section IV.

Performing a standard derivation [18], [19], it can be

shown that the drift-plus-penalty expression is bounded by the

following quantity (B is a positive constant related to network

capacities and characteristics of the arrival process)

∆(t) + V π(t) ≤ B +
∑

c

Q(c)
sc

(t)λ(c)

−
∑

c,n

(

Q(c)
n (t)− α(c)

n (K)V
)

E[d(c)n (t)|Q(t)]

︸ ︷︷ ︸

shedding

−
∑

c,(n,m)∈P (c)

(

Q(c)
n (t)−Q(c)

m (t)
)

E[µ(c)
n (t)|Q(t)]

︸ ︷︷ ︸

routing

, (15)

Observe that the Right-Hand Side (RHS) of (15) has

two controllable terms noted with under brackets, one term

controlled by the shedding variable d
(c)
n (t) and one term

controlled by the routing variable µ
(c)
n (t). We propose E-DLS,

an online policy which observes the current queue state Q(t)
and minimizes the RHS of (15) at every slot. The policy is

presented below.
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E-DLS Energy-efficient Distributed Load Shedding

Pushback Routing: Let Cnm ⊆ C be the set of sessions

that compete for service on each link (n,m) ∈ L. Choose

c∗nm ∈ argmaxc∈Cnm
(Q

(c)
n (t) − Q

(c)
m (t)) (ties broken

arbitrarily). Over link (n,m) route

µ
(c∗nm)
n (t) =

{

Rnm if Q
(c∗nm)
n (t)−Q

(c∗nm)
m (t) > 0,

0 otherwise
(16)

and µ
(c)
n (t) = 0 for all the other sessions c ∈ Cnm \ {c∗nm},

where Rnm is the capacity of the link.

Packet Shedding: For each session c ∈ C and node n ∈
P (c) ∩N \ {δc} choose

d(c)n (t) =

{

dmax if Q
(c)
n (t) > α

(c)
n (K)V ,

0 otherwise.
(17)

Above, α
(c)
n (K) = K−h

(c)
n , where h

(c)
n is the hopcount from

n to the destination δc.

Parameter Selection: dmax, V,K are given in Table I.

TABLE I
PARAMETER SELECTION FOR E-DLS

Param. Explanation Suggested values

µ(c)
n (t) routing control variable [0, Rnm]

d(c)
n (t) shedding control variable [0, dmax]

Rnm capacity of link (n,m) problem defined

h(c)
n hop count from destination along

P (c)
problem defined

Amax maximum arrivals in one slot problem defined

dmax shedding batch size ≥ Amax + max(n,m) Rnm

K weight of throughput maximization ≥ max(n,c) h
(c)
n + 1

V energy/delay tradeoff > 0

E-DLS operates in a distributed manner, using only locally

available information. For the computation of (16) we require

knowledge of the neighbor backlogs. It is straightforward to

collect this information using messaging that incurs minor

throughput overhead [15]. Backlog information obtained in

this way is often delayed, however prior findings show that

this does not hurt throughput optimality [19, §4.7]. The

computation of (17) is done locally at each node.

To save energy, E-DLS drops all unnecessary packets near

the sources, hence with respect to vector q the obtained

solution resembles the one from source-based congestion

control. However, E-DLS additionally protects the network

from denial of service attacks, or situations where a source

is malfunctioning. By performing congestion control every-

where, the network is inherently shielded from overload.

Moreover, as shown in Section V, the load shedding solution

for multicast sessions differs fundamentally from the source-

based congestion control.

D. Performance Evaluation of E-DLS

The performance of E-DLS is characterized by the following

theorem.

THEOREM 1 [PERFORMANCE OF E-DLS]: Consider a se-

quence of systems operating under E-DLS parameterized by

K,V . Suppose that each system starts empty. For each system,

denote the sum throughput achieved by E-DLS with T̂ (K)

C1

30Mb/s 30Mb/s 30Mb/s 8.6Mb/s

R4R3R2R1

(a) Experimentation setup

C1R4

injected

20Mb/s
throughput

8.6Mb/s

dropped 11.4Mb/s

R3R2R1

(b) E-DLS

C1

injected

20Mb/s
throughput

8.6Mb/s

dropped 11.4Mb/s

R4R3R2R1

(c) ORA [4]

Fig. 2. Single-path experimentation setup (a) and experimental results (b)-(c).

(defined in (13)) and the consumed energy with Ê(K,V )
(defined in (14)).

(1) Bounded backlogs. For any K,V we have

Q(c)
n (t) ≤ KV + dmax, for all c, n, t. (18)

(2) Near optimal throughput. The sum throughput achieved

satisfies

lim
K→∞

T̂ (K) = T ∗, (19)

where T ∗ is the maximum sum throughput from (5).

(3) Near optimal number of transmissions. The total en-

ergy consumed (measured in number of transmissions)

satisfies

lim
K→∞

lim
V→∞

Ê(K,V ) = E∗,

where E∗ is the minimum value of (7).

Proof of Theorem 1. The proof is in Appendix A.

Theorem 1 shows that E-DLS approximately solves (7),

i.e., achieves maximum sum throughput using the minimum

required number of transmissions. As we see in the theorem,

to accurately approximate the desired solution both K and V
need to be chosen arbitrarily large. In practice we will choose

finite values for K and V so that the solution is approximated

in a satisfactory level but KV is kept as small as possible,

which provides delay guarantees. We study this tradeoff in

the next section.

IV. EXPERIMENTAL EVALUATION OF E-DLS

In this section we focus our study on a simple five-

node network shown in Fig. 2(a). We conduct two sets of

experiments, where in the first we inject 20Mb/s at node R1

(4-hop topology shown) and in the second we inject the same

load at node R3 (2-hop topology, not shown). The data are

always destined to client C1. The experiments are run in

NITOS [20], where network nodes implement our proposed

policy E-DLS. Details about our implementation are given in

[21]. We note that all wireless links operate in non interfered

frequency channels, since each node is equipped with two
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(a) Throughput over 2-hop path.
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(b) Energy over 2-hop path.
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(c) Delay over 2-hop path.
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(d) Throughput over 4-hop path.
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(e) Energy over 4-hop path.
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(f) Delay over 4-hop path.

Fig. 3. Single-path experimentation results.

wireless interfaces, one used for the preceding and one for

the following link on the path. As follows, the network model

is the same as this of a wireline network, since the links are

wireless but non-interfered and almost static (no mobility).

To showcase our improvements, we compare our approach

to an implemented version of the ORA policy from [4],

which performs distributed load shedding for maximum sum

throughput without any energy considerations. Fig. 2(b)-2(c)

show the resulting queue shedding rates from the 4-hop set

of experiments and clearly demonstrate the benefits of our

proposed scheme. By shedding 11.4Mb/s early on, our scheme

reduces the total transmissions from 68.6Mb/s to 34.4Mb/s,

reducing the energy spent in transmissions by half.

In the remaining section we study tradeoffs between energy,

throughput and delay, that naturally arise in stochastic opti-

mization [22]. Fig. 3 shows the measured energy, throughput,

and delay performance of E-DLS compared to ORA, for

both 2-hop (top figures) and 4-hop (bottom figures) cases,

where we vary K,KV . For ORA we vary V and plot the

corresponding point assuming K = 1. From Figures 3(a)-

3(d) we observe that the throughput of E-DLS improves when

K, or KV increase, as expected. The maximum throughput

is 8.6Mb/s, due to the bottleneck of the last hop in Figure

2, and it is achieved in all cases when KV > 1500. From

Figures 3(b)-3(e) we derive a similar conclusion for energy

performance: larger values for K and KV reduce energy. The

minimum energy for the 2-hop topology measured in rate of

transmissions and power consumption is 17.2Mb/s and 43.8W

respectively, while for the 4-hop topology is 34.4Mb/s and

87.7W. ORA has a gap from the optimal energy, while E-DLS

achieves it as K,KV increase. For small values of KV ,

E-DLS consumes less energy because most of the packets are

dropped early and throughput is small. Increasing KV , first we

achieve maximum throughput, and then energy consumption

gradually reduces to minimum. Last from Figures 3(c)-3(f),

we observe that the average delay increases linearly to KV .

Combining the observations from Fig. 3, the best choice is

to keep K as small as possible and increase V . In particular,

we choose K = max(n,c) h
(c)
n +1, which is the smallest integer

that satisfies the condition given in the explanation under (11).

Then V must be chosen accordingly to yield a good tradeoff

between energy and average delay. For example, in the 2-hop

topology, a good choice is K = 3 and V = 1200, which yields

energy 17.9Mb/s and average delay 2.1sec, as it is illustrated

in Figures 3(b) and 3(c) for KV = 3600. Moreover, the total

power consumption in this case is reduced to 43.9W, that

is 300mW less than the corresponding power consumption

of ORA. As future work, we plan to research methods for

reducing the backlog sizes, thus improving the experienced

delay. Two promising methods are (i) the initialization of

backlogs with low-priority virtual packets, and (ii) the use of

learning methods from [23].

V. MULTIRATE MULTICAST

In single-path unicast, the solution of our distributed load

shedding optimization (7) with respect to the shedding vector

q resembles the solution of source-based congestion control,

although E-DLS solves (7) using a distributed scheme that

operates in the entire network. In this section we consider

multicast sessions delivered to receivers over multicast trees.

Our objective remains to minimize energy subject to delivering

maximum sum throughput to all receivers in the multicast

group. We allow receivers to obtain the data stream at dif-

ferent rates, i.e., we consider multirate multicast. In multirate

multicast, congestion control at the source is not efficient, [15],

[24]. To maximize sum throughput, packets should be dropped
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at multiple nodes. In particular, each node should shed that

many packets such that the remaining packet transmission rate

is equal to the maximum reception rate by all receivers served

through this node.

Multicast session c has a set of receivers ∆(c) and utilizes

a multicast tree with set of links L(c). To perform multicast

operations, a node with multiple outgoing links has multiple

queues. For every link l ∈ L(c), there is a queue backlog

Q
(c)
l (t) at the incident node holding packets for transmission

over that link. Upon arriving to a node, packets are replicated

to all queues Q
(c)
l (t), where l are outgoing links from that

node. The shedding rates at each queue may be different,

denoted with q
(c)
l . Similarly, the data flow rate to each link

is denoted with f
(c)
l . Following the same notation as before,

the rate of received session c packets by all destinations ∆(c) is

expressed as r(c). The sum throughput received at all receivers

of multicast sessions can be expressed in the same fashion with

(6). The throughput of each session c receiver is the arrived

traffic λ(c) less the shedding rates of the links connecting the

source to this receiver.

As follows, the sum throughput is the total injected rate

times multicast group size less a weighted sum of the shedding

rates, where the weight of each shedding rate is the number

of the receivers that are affected by this. In particular,
∑

c

r(c) =
∑

c

∣
∣
∣∆(c)

∣
∣
∣λ(c)

︸ ︷︷ ︸

total throughput
without shedding

−
∑

c,l

m
(c)
l q

(c)
l

︸ ︷︷ ︸

total shedding rate
times affected receivers

, (20)

where the index in the summations hereinafter is a shorthand

form of c ∈ C and l ∈ L(c), and m
(c)
l is the number of

receivers connected to source sc via link l. When packets

are dropped on this link, the throughput of all such receivers

is reduced, hence the multiplier in (20). Moreover, the total

number of transmissions can be expressed in the same fashion

with (9) as
∑

c,l

f
(c)
l =

∑

c

∣
∣
∣L(c)

∣
∣
∣λ(c)

︸ ︷︷ ︸

total trans/sion rate
without shedding

−
∑

c,l

H
(c)
l q

(c)
l

︸ ︷︷ ︸

total shedding rate
times affected links

, (21)

where H
(c)
l is the number of links in the subtree connected to

the source via l (including l). When packets are dropped on l,
the packet transmission rate of all the links in the remaining

subtree is also reduced. Following the same approach of

Section III-B, by replacing the total packet transmission rate

and throughput of (7) with the RHS of (20) and (21), we may

express our objective:

Weighted Shedding Minimization for Multicast:

min
f ,q≥0

∑

c,l

β
(c)
l (K)q

(c)
l (22)

s.t. f
(c)
p(l) = q

(c)
l + f

(c)
l , ∀l ∈ L(c), c ∈ C, (23)

∑

c:l∈L(c)

f
(c)
l ≤ Rl, ∀l ∈ L(c), (24)

where p(l) is the preceding link of l in the multicast tree of

session c, and by convention we set f
(c)
p(l) = λ(c) for l outgoing

from source. Also Rl is the capacity of link l and we define

β
(c)
l (K) , m

(c)
l K − H

(c)
l for all c, l. Above, equations (23)

are flow conservation constraints per link, and inequalities (24)

are capacity constraints.

The online control policy of multicast E-DLS is derived

from the same analysis of Section III-C. The penalty function

is now driven from (22), so we choose

π(t) =
∑

c,l

β
(c)
l (K)E[d

(c)
l (t)|Q(t)],

where d
(c)
l (t) is the number of packets to be dropped from

Q
(c)
l (t). Denoting the packet transmission rate over link l as

µ
(c)
l (t) and assuming that µ

(c)
p(l)(t) are the source generated

packets when l is an outgoing link of sc, then each queue

evolution is expressed as

Q
(c)
l (t+ 1) ≤

[(

Q
(c)
l (t)− µ

(c)
l (t)

)+

− d
(c)
l (t)

]+

+ µ
(c)
p(l)(t),

∀l ∈ L(c), c ∈ C

and the drift-plus-penalty expressions is bounded by

∆(t) + V π(t) ≤ B2 +
∑

c,l=(sc,m)∈L(c)

Q
(c)
l (t)λ(c)

−
∑

c,l

(

Q
(c)
l (t)− β

(c)
l (K)V

)

E[d
(c)
l (t)|Q(t)]

︸ ︷︷ ︸

shedding

−
∑

c,l



Q
(c)
l (t)−

∑

l′:p(l′)=l

Q
(c)
l′ (t)



E[µ
(c)
l (t)|Q(t)]

︸ ︷︷ ︸

routing

.

The following policy minimizes the above RHS at every slot.

multicast E-DLS

Pushback routing: Similarly to E-DLS, choose c∗l ∈

argmaxc∈Cl
(Q

(c)
l (t) −

∑

l′:p(l′)=l Q
(c)
l′ (t)) (ties broken arbi-

trarily) and route

µ
(c∗l )
l (t) =

{

Rl if Q
(c)
l (t)−

∑

l′:p(l′)=l Q
(c)
l′ (t) > 0,

0 otherwise.

µ
(c)
l (t) = 0 for all the other sessions c ∈ Cl \ {c

∗
l }.

Packet Shedding per link: For each c ∈ C and l ∈ L(c)

choose

d
(c)
l (t) =

{

dmax if Q
(c)
l (t) > β

(c)
l (K)V

0 otherwise.

Above, β
(c)
l (K) = m

(c)
l K −H

(c)
l , where m

(c)
l is the number

of session c receivers downstream from link l and H
(c)
l is the

number of links in the subtree connected to sc via l, with l.
Parameter Selection: K ≥ ⌈(maxc,l H

(c)
l + 1)/m

(c)
l ⌉ and

dmax, V are given in Table I.

We experiment in NITOS with multicast E-DLS and we

compare its performance to MMT [15] and EECA [25]. In

Fig. 4(a) we consider a simple multicast tree topology that

showcases the advantages of our distributed load shedding

mechanism. First, observe that EECA (Fig. 4(b)), a source-

based congestion control scheme designed for minimum en-
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Fig. 4. Multicast tree setup (top-left) and experimental results (rest).

ergy in unicast, drops all excess load at the source, and

hence its sum throughput is 40Mb/s, which is less that the

theoretically maximum 50Mb/s. This demonstrates that in

multirate multicast, a source-based solution is not efficient.

Then, observe that the distributed load shedding policy MMT

from [15] (Fig. 4(c)), which is the multicast extension of

ORA. It achieves maximum sum throughput, but uses unnec-

essarily more energy than multicast E-DLS (Fig. 4(d)), since

it carries excess traffic of 10Mb/s from R1 to R3 which is

later dropped. In conclusion, the proposed multicast extension

multicast E-DLS achieves maximum sum throughput using

only the necessary average number of transmissions.

VI. CONCLUSION & FUTURE WORK

We study distributed load shedding in a network, which

amounts to initially admitting all extraneous load and grad-

ually shedding part of the load at individual nodes in a

distributed fashion. It is observed that such a methodology

may lead to excessive energy consumption, since some packets

may be forwarded several hops before they are dropped.

We formulate a multi-objective load shedding optimization

problem where we seek to minimize the energy used to achieve

maximum sum throughput. We prove that a simple distributed

online policy, using threshold-based shedding and pushback

routing, solves this problem for the case of single-path unicast

sessions. Then we propose a heuristic extension for multirate

multicast routing. In [21] we also include a heuristic extension

for multipath routing. Experiments in NITOS showcase that

our policies achieve our objectives.

Our work can be extended in many ways. First, the consid-

eration of multipath routing can be incorporated using methods

similar to [24]. It is desirable to prove that our proposed policy

succeeds in solving optimally the multirate multicast routing

case as well. Moreover, we plan to further extend the proposed

policy towards the maximization of the sum utility, instead of

the sum throughput, assuming that each destination is assigned

a potentially different utility function. Last but not least, we

are willing also to include network modeling for multihop

wireless with links operating on the same channel.
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APPENDIX A

PROOF OF THEOREM 1

Proof of Theorem 1, part (1). To show that the queue lengths

are deterministically bounded by (18), we use induction. Since

the system starts empty, (18) clearly holds for t = 0. Suppose

it also holds for t, we will show it is true for t + 1. First,

assume Q
(c)
n (t) ≤ KV . Then from (1) we have

Q(c)
n (t+ 1) ≤ Q(c)

n (t) + µ
(c)
p(n)(t)

≤ KV +Amax + max
(n,m)

Rnm = KV + dmax.

Else, if Q
(c)
n (t) > KV then by the inductive step it has to be

KV < Q
(c)
n (t) ≤ KV + dmax. From (17), E-DLS decides to

shed dmax packets in this slot. Hence

Q(c)
n (t+ 1) ≤

(

Q(c)
n (t)− dmax

)+

+ µ
(c)
p(n)(t) ≤ KV + dmax.

This completes the proof for (18).

Proof of Theorem 1, part (2). In this part, we will show that

the dynamic packet-level decisions converge in the limit to

time-averages that support maximum throughput. The total

number of session c packets generated up to time τ are split

in the following way

τ−1∑

t=0

A(c)(t)

︸ ︷︷ ︸

arrived

=

τ−1∑

t=0

µ̃
(c)
p(δc)

(t)

︸ ︷︷ ︸

received

+
∑

n

τ−1∑

t=0

d̃(c)n (t)

︸ ︷︷ ︸

dropped

+
∑

n

Q(c)
n (τ)

︸ ︷︷ ︸

queued

,

where we denote with d̃
(c)
n (t) the actual number of packets

dropped from node n, since d̃
(c)
n (t) depends on backlog avail-

ability and d̃
(c)
n (t) ≤ d

(c)
n (t). A consequence of the bounded

backlogs from part (1) is that limτ→∞
1
τ

∑

c,n E[Q
(c)
n (τ)] = 0.

Summing up over sessions, taking expectations, dividing by τ ,

taking limits, and using the Law of Large Numbers for A(c)(t),
we get ∑

c

λ(c) = T̂ (K) +
∑

c,n

q̂(c)n , (25)

where q̂
(c)
n , limτ→∞

1
τ

∑τ−1
t=0 E[d̃

(c)
n (t)] is the limit of time

average shedding for E-DLS.

We introduce RAN, a helpful randomized policy that uses

an offline solution to (12) (f∗, q∗) (the solution depends on

K,V ), and then chooses controls so that E[µ
(c)
n (t)|Q(t)] =

f
(c)∗
n and E[d

(c)
n (t)|Q(t)] = q

(c)∗
n . This is an ω-only optimal

policy [18]. Let us denote by Y (t) the RHS of (15) evaluated

under E-DLS and Y ∗(t) under RAN. Since E-DLS is designed

to minimize the RHS of (15) at every slot, we have Y (t) ≤
Y ∗(t), and combining with (15) we have

∆(t) + V
∑

c,n

α(c)
n (K)E[d(c)n (t)|Q(t)] ≤ Y ∗(t). (26)

Canceling out terms using the flow conservation (3) we find

that Y ∗(t) = B + V
∑

c,n α
(c)
n (K)q

(c)∗
n . So, summing up the

inequality (26) over slots {0, ..., τ−1}, dividing by V τ , taking

expectation with respect to backlogs, and using L(0) = 0,

EL(τ)

V τ
+
1

τ

τ−1∑

t=0

∑

c,n

α(c)
n (K)E[d(c)n (t)] ≤

B

V
+
∑

c,n

α(c)
n (K)q(c)∗n .

Taking limits, and using limτ→∞ EL(τ)/τ → 0 from (18),

the above becomes

∑

c,n

α(c)
n (K)q̂(c)n ≤

B

V
+
∑

c,n

α(c)
n (K)q(c)∗n . (27)

Also, by the constraint on maximum drops per slot we have
∑

c,n h
(c)
n q̂

(c)
n ≤ CN2dmax. Thus,

T̂ (K)
(25)
=
∑

c

λ(c) −
1

K

∑

c,n

α(c)
n (K)q̂(c)n −

1

K

∑

c,n

h(c)
n q̂(c)n

(27)

≥
∑

c

λ(c) −
B/V +

∑

c,n α
(c)
n (K)q

(c)∗
n + CN2dmax

K

(6)

≥
∑

c

r(c)∗(K)−
B/V + CN2dmax

K
,

where
∑

c r
(c)∗(K) is the max throughput from (12). Using

proposition 4.2.1 from [17], any solution of (12) converges to

some solution of (10), i.e., limK→∞

∑

c r
(c)∗(K) = T ∗. The

proof of (19) is completed by taking the limit K → ∞.

Proof of Theorem 1, part (3). From (7) we have

E∗ = min
f ,q≥0

∑

c,n

f (c)
n

(9)
=
∑

c

N (c)λ(c) − max
f ,q≥0

∑

c,n

h(c)
n q(c)n

=
∑

c

N (c)λ(c) −
∑

c,n

h(c)
n q(c)n , (28)

where q
(c)
n is the solution to (7), and N (c) is the number of

nodes on path P (c) less the destination. The expected number

of transmitted packets up to τ under E-DLS are

τ−1∑

t=0

E[µ̃(c)
n (t)] =

τ−1∑

t=0



A(c)(t)−
∑

k∈U(n)

E[d̃
(c)
k (t)] + E[Q

(c)
k (t)]



 .

Dividing by τ and taking limits we have

f̂ (c)
n = λ(c) −

∑

k∈U(n)

q̂(c)n (K,V ), (29)

where f̂
(c)
n = limτ→∞ 1/τ

∑τ−1
t=0 E[µ̃

(c)
n (t)]. Now we express

the total energy consumed under E-DLS as

Ê(K,V )
(14)
=
∑

c,n

f̂ (c)
n

(29)
=
∑

c,n



λ(c) −
∑

k∈U(n)

q̂(c)n (K,V )





=
∑

c

N (c)λ(c) −
∑

c,n

h(c)
n q̂(c)n (K,V )

(28)
= E∗ +

∑

c,n

h(c)
n

[

q(c)n − q̂(c)n (K,V )
]

. (30)

Let q̂
(c)
n (K,∞) denote the limit performance under E-DLS

as we increase V → ∞. From (27) we have
∑

c,n

α(c)
n (K)q̂(c)n (K,∞) ≤

∑

c,n

α(c)
n (K)q(c)∗n (K). (31)

Since (q̂
(c)
n (K,V )), (f̂

(c)
n (K,V )) is a feasible solution of (12),

then by (31) it follows that q̂
(c)
n (K,∞) is also an optimal one.

Therefore, we may revisit the design of the RAN policy and

specifically select q
(c)∗
n (K) = q̂

(c)
n (K,∞) for all n. Finally the

proof can be completed by taking the limit V → ∞,K → ∞
on (30) and noticing that limK→∞ q

(c)∗
n (K) = q

(c)
n .


