
electronics

Article

SDN Controller Placement and Switch Assignment
for Low Power IoT

Kostas Choumas * , Dimitris Giatsios, Paris Flegkas and Thanasis Korakis

Department of Electrical and Computer Engineering, Polytechnic school, University of Thessaly, Argonafton &
Filellinon, 382 21 Volos, Greece; gidimitr@uth.gr (D.G.); pflegkas@uth.gr (P.F.); korakis@uth.gr (T.K.)
* Correspondence: kohoumas@uth.gr

Received: 21 January 2020; Accepted: 7 February 2020; Published: 13 February 2020
����������
�������

Abstract: Software defined networking (SDN) complements low power Internet of Things (IoT),
since the former offers dynamicity and the latter is susceptible to environmental changes. The SDN
controller placement refers to the selection of the IoT sensors running the controllers, while the switch
assignment is the process of mapping each sensor to a controller. Both choices affect the volume of
the control traffic, a significant metric in low power wireless IoT networks where bandwidth is scarce
or energy consumption is important. In this paper, we model an optimization problem for minimum
control traffic, assess its complexity and devise a set of heuristic algorithms for expediting its solution.
We initially present a fast and simple heuristic algorithm, which is then extended to two iterative
algorithms with even better performance at the cost of time complexity. Our simulations and testbed
experimentation reveal close to optimal performance of all heuristic solutions with significantly less
computation time than explicitly solving the optimization problem. At the end, we provide insights
for further enhancements of these heuristics with a bias for minimum control delay.

Keywords: internet of things; software defined networking; testbed experimentation

1. Introduction

Preliminary results of this work have been presented at IEEE CCNC 2019 [1].
Software defined networking (SDN) decouples the control and data planes, transferring the

control logic to the SDN controllers and leaving only the forwarding actions to the network equipment.
The network devices can be switches, computers or sensors, which have to forward packets between
each other according to a controller defined strategy. At first, SDN architecture relied on a single
controller communicating with all devices, named SDN switches. However, this approach is not
scalable and was soon outplaced by an advanced design exploiting more than one controller. According
to this design, the load of the controller-to-switch (Ctr–Sw) traffic is shared between the controllers;
however, at the expense of extra traffic for the controller-to-controller (Ctr–Ctr) communication.
The inter-controller traffic is necessary for the synchronization of the controllers.

IoT networks are dynamic and susceptible to environmental changes; thus, SDN complements IoT
with its adjustable nature. Nevertheless, the volume of the SDN control traffic is critical for efficient
IoT operation, since it affects the total energy consumption [2] and reduces the available bandwidth
for the data traffic. In general, IoT networks suffer from limited energy and communication facilities,
since they mostly rely on battery-powered wireless sensors. Thus, the minimization of the control
traffic is very important for SDN-based IoT networks. This objective is significantly affected by the
controller placement, which is the selection of the IoT nodes hosting SDN controllers, apart from being
SDN switches themselves.

Starting from [3], a substantial amount of work has already been devoted to the research on the
controller placement problem, considering a wide variety of objectives. The two questions typically

Electronics 2020, 9, 325; doi:10.3390/electronics9020325 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-5237-7254
http://dx.doi.org/10.3390/electronics9020325
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/2/325?type=check_update&version=2


Electronics 2020, 9, 325 2 of 19

asked are: (i) How many controllers are required? (ii) Where should they be placed? Depending on
the objective, the closely related problem of selecting the controller to assign a switch to (the switch
assignment problem) might also be non-trivial. Although the existing literature mainly proposes
controller placements that minimize the time delays for the Ctr–Sw traffic, this paper considers the
controller placement effect on the total control traffic (both Ctr–Ctr and Ctr–Sw) and aims at its
minimization. Additionally, from an architectural point of view, the primary concern of SDN-based IoT
should be whether its controller placement is distributed or centralized, since it significantly impacts
the network performance in terms of energy consumption, scalability and reliability [4].

The take-home message of this paper is that as the number of controllers increases and the
placement becomes more distributed, the controllers get closer to the switches and the volume of
the Ctr–Sw traffic decreases. On the other hand, if the controllers are fewer and more concentrated,
then the volume of the Ctr–Ctr traffic decreases. To exemplify those points, Figure 1 shows in the
middle an IoT network with six sensors behaving as SDN switches. The left controller placement
is more centralized, using only two controllers collocated with switches 1 and 2, while the right
placement is more distributed, using three controllers placed at switches 1, 2 and 3. In both left and
right placements, all switches have to communicate with one of the 2 or 3 controllers through 4 or 3
Ctr–Sw (blue) channels, while the controllers need 1 or 3 Ctr–Ctr (red) channels respectively. The left
centralized placement features less Ctr–Ctr but more Ctr–Sw traffic compared to the right distributed
placement, while the placement that minimizes the total control traffic depends on the per-unit-load
of these two types of traffic, which are their minimum values in the simplest case of a Ctr–Sw or
Ctr–Ctr channel.

●

●

1

2

3

4

5

6

● Controller & Switch

Switch

Ctr−Ctr

Ctr−Sw

1

2

3

4

5

6

network link

●

●

●

1

2

3

4

5

6

● Controller & Switch

Switch

Ctr−Ctr

Ctr−Sw

Figure 1. Toy example: The left controller placement increases the Ctr–Sw traffic, while the right
controller placement increases the Ctr–Ctr traffic. The line widths of the edges are proportional to the
bandwidth required by the respective links.

The fourfold contributions of this paper are to:

(i) Model the controller placement and switch assignment problem using integer quadratic
programming (IQP) with the objective to minimize the required bandwidth for the total control
traffic;

(ii) Propose and evaluate a set of heuristic algorithms that expedite the aforementioned problem
solution, since the IQP complexity does not scale well with the network size;

(iii) Compare the performance of the optimal (given by IQP) and heuristic solutions, using network
topologies given by the Internet Topology Zoo collection [5] (considering the graphs of this
reference point as IoT network topologies);

(iv) Provide testbed measurements for estimating the volume of both control traffic types and their
per-unit-load.

In our model, the Ctr–Sw (southbound) and Ctr–Ctr (east-west) protocols are OpenFlow
and Raft [6,7] respectively, which are used by the state-of-the-art SDN controllers [8], such as
OpenDaylight [9] and ONOS [10].



Electronics 2020, 9, 325 3 of 19

The remainder of this paper is organized as follows. Section 2 introduces related work. We present
the system model and problem statement in Section 3, followed by an analysis of its optimal solution
in Section 4. In Section 5, we devise a simple heuristic to expedite the problem solution, while in
Section 6, we build on this and propose two iterative heuristic algorithms. Section 7 presents our
experimentation results in the NITOS testbed. In Section 8, we discuss some aspects and design choices
in our analysis, and provide directions for future work. The final Section 9 concludes the paper.

2. Related Work

The controller placement problem is introduced by Heller in [3], narrowing its focus to two
questions: given a network topology of SDN switches, how many controllers are needed and where
in the topology should they be placed? Multiple optimization goals differentiate the answers to these
questions; e.g., the minimization of the average or the worst Ctr–Sw delay is achieved by placing the
controllers according to the solution of the minimum k-median or k-center problem respectively. These
optimization problems are NP-hard; thus, heuristics are exploited, such as the k-medoids algorithm [11].
The optimized criteria can also be related to the minimization of the controller load imbalance, such as
the capacitated controller placement problem [12], which also considers the controller capacity and is
formulated as a mixed integer linear programming (MILP) problem.

In [8], new optimized criteria are introduced by also considering the Ctr–Ctr traffic, except for
the Ctr–Sw one. The goal is to minimize the reaction time perceived at the switches, having in mind
that it also depends on the Ctr–Ctr delays, besides the Ctr–Sw ones. A joint study of the Ctr–Sw and
Ctr–Ctr traffic overhead costs is presented in [13], minimizing the weighted sum of these two costs
and two extra ones. The problem is formulated as an integer linear programming (ILP) problem and
two heuristics are presented. An interesting aspect in [13] is that the dynamicity of decisions is taken
into account, and switch reassignment cost is explicitly included in the model. Reassignment cost
has also been considered in [14] in a virtual evolved packet core (vEPC) setting, where relocation
frequency of a vEPC is among the metrics to minimize. In [11], Pareto-optimal placements are derived
aiming to solve a multi-objective optimization, where one of the objectives is the minimization of the
control traffic. To this end, a MATLAB framework is developed, capable of producing both an exact
solution with exhaustive search and an approximate solution using Pareto simulated annealing. In [15],
the learning automaton (LA)-based heuristic algorithm is introduced for controller placement. In [16],
the objective of minimizing the overhead of software defined measurements is considered; a related
IQP problem is formulated assuming fixed Ctr–Ctr costs; and an approximation algorithm with a fixed
approximation ratio is devised. In [17], an approximation algorithm with a guaranteed performance
bound is derived for a model similar to the one we consider in this paper; however, the proof requires
that the per-unit-load of the Ctr–Ctr traffic does not depend on the number of flows installed in the
switches, which is not the case in practice.

This is the enhanced extension of first study [1] of the controller placement and switch assignment
problem, focusing exclusively on the minimization of the required bandwidth for the total control
traffic. We focus exclusively on this optimization objective, since we want to analyze the effects of the
contradictory tendencies of either centralizing or distributing the control plane, on the volume of the
control traffic, as it is outlined in [4]. Differently to our previous study [1], we introduce two additional
heuristic algorithms, with enhanced performance, at a cost of slightly more computation time (more
details in Section 6). The new heuristics build upon the base heuristic presented in our previous work
and apply a local search approach to discover even better placements. Moreover, we have added
results for a modified version of the optimization problem with an additional constraint, which are
particularly helpful as a benchmark for our heuristic estimating the number of needed controllers.
Finally, a new section has been added, where we discuss some of the design choices in this paper
and provide hints for further research on the topic, such as how to use our heuristic methods for
minimizing both the total control traffic and the average Ctr–Sw delay.



Electronics 2020, 9, 325 4 of 19

3. System Model and Problem Statement

Let us assume an SDN-based IoT network, represented by a network graph G = (S ,L), where S
is the set of S switches (or sensors) and L is the set of the L network links between them. Without loss
of generality, we assume that the control traffic is routed through the shortest path, which is p(s1, s2)

for connecting switches s1, s2 ∈ S , and the number of links included in this path is |p(s1, s2)|. C ⊆ S is
the subset of switches where C = |C| controllers are placed. From now on, we may refer to c ∈ C as a
controller or the switch hosting it, interchangeably. Let cs ∈ C denote the controller that switch s ∈ S
is assigned to. Vector c = (cs ∈ C : s ∈ S) describes a controller placement and switch assignment,
where each vector coordinate maps to a switch s ∈ S and the vector value indicates the corresponding
controller cs ∈ C. The controller placement is given by the set of the vector values.

Our goal is to minimize the volume of the total control traffic, which is the sum of the Ctr–Sw and
Ctr–Ctr traffic. The aggregated required bandwidth for the Ctr–Sw traffic from all network links is

BS = ∑
s∈S

∑
l∈p(s,cs)

bs = ∑
s∈S

wsbs, (1)

where ws = |p(s, cs)|, and bs is the bandwidth required for the Ctr–Sw traffic between switch s and
controller cs. The southbound protocol dependent bs are independent of the controller placement; thus,
BS decreases with ws, which happens with many distributed controllers close to the switches. On the other
hand, the corresponding aggregate required bandwidth for the Ctr–Ctr traffic is

BC = ∑
c1∈C

∑
c2∈C−{c1}

∑
l∈p(c1,c2)

b(c1,c2) = ∑
(c1,c2)∈C2

w(c1,c2)b(c1,c2), (2)

where w(c1,c2) = |p(c1, c2)| (w(c,c) = 0 and b(c,c) = 0), and b(c1,c2) is the bandwidth required for the
Ctr–Ctr traffic initiated from c1 and sent to c2. The east-west protocol dependent b(c1,c2) are independent
of the controller placement; thus, BC decreases with w(c1,c2), which happens with few centralized controllers,
one close to the other.

In this work, we study the optimal controller placement and switch assignment c∗ = (c∗s ∈
C∗ : s ∈ S) for minimum control traffic, where C∗ gives the optimal placement of C∗ controllers.
The solution of this problem is defined as

c∗ = arg min
c

(BS + BC) = arg min
c

(
∑
s∈S

wsbs + ∑
(c1,c2)∈C2

w(c1,c2)b(c1,c2)
)
. (3)

Note that we can alternatively choose the weights w to reflect the per goodput byte consumed
energy for a transmission along the path between the switch (or controller) and the (other) controller.
In this way, we seek to minimize the total energy consumed for the control traffic. The mathematical
formulation is exactly the same in both cases, so throughout this paper we consider the weights to
represent shortest path lengths for simplicity.

Finally, we make the following remarks, identifying the per-unit-load of both types of traffic.
More specifically, we assume (and validate later in our experimentation, presented in Section 7) that:

Remark 1. The required bandwidth for the Ctr–Sw traffic exchanged between a switch and its controller is
proportional to the number of flows existing in this switch.

Remark 2. The required bandwidth for the Ctr–Ctr traffic exchanged between two controllers and initiated
from one of these two is proportional to the number of switches assigned to this controller.

According to Remark 1, if βs is the required bandwidth for a flow, then bs = f sβs, ∀s ∈ S ,
where f s is the number of flows existing in switch s. We also assume that f = ∑s∈S f s/S denotes the
average number of flows per switch. Moreover, in line with Remark 2, if βc is the volume of the Ctr–Ctr



Electronics 2020, 9, 325 5 of 19

traffic for each assigned switch, then b(c1,c2) = yc1 βc, ∀(c1, c2) ∈ C2 : c1 6= c2, where yc = ∑s∈S :cs=c 1
denotes the number of switches assigned to controller c. As follows, the problem of Equation (3) can
be rewritten as

c∗ = arg min
c

(
∑
s∈S

ws f sβs + ∑
(c1,c2)∈C2

w(c1,c2)yc1 βc). (4)

4. Problem Solution

4.1. Insights from the Closed form Solution for Mesh Networks

Let us consider a mesh network where all switches have the same number f of flows and
there is a link between each pair of switches. We search for the optimal controller placement and
switch assignment; that is, the solution to the problem of Equation (4). Because of the mesh network
symmetry, only the number of controllers effects the solution efficiency and not their placement.
Thus, after finding the optimal size C∗ of the controller set, their placement can be done randomly.
In addition, the switches can be randomly assigned to the controllers, keeping in mind that each
controller must control at least the switch that it is collocated with.

From Equation (1) and Remark 1, we have

BS
mesh = ∑

s∈S−C
f sβs = ∑

s∈S−C
f βs = (S− C) f βs. (5)

Moreover, each controller c is one-hop away from the other controllers, and it is responsible for
∑s:cs=c 1 switches (∑s, ∑c and ∑(c1,c2)

are equivalent to ∑s∈S , ∑c∈C and ∑(c1,c2)∈C2 respectively). Thus,
∑c ∑s:cs=c 1 = S, since all controllers are responsible for all switches. As follows, from Equation (2)
and Remark 2, we have

BC
mesh = ∑

(c1,c2):c1 6=c2

∑
s:cs=c1

βc = ∑
c1

∑
s:cs=c1

∑
c1 6=c2

βc = ∑
c1

∑
s:cs=c1

(C− 1)βc = S(C− 1)βc. (6)

The number C∗ minimizing the sum BS
mesh + BC

mesh = (S− C) f βs + S(C− 1)βc = S( f βs − βc) +

C(Sβc − f βs) is equal to

C∗ =

{
1, if Sβc − f βs ≥ 0⇒ f βs/βc ≤ S
S, if Sβc − f βs < 0⇒ f βs/βc > S

. (7)

This is a toy example that clearly presents an outcome of this study; namely, the relation between
C∗, the fraction f βs/βc and the network size S. The optimal number of controllers C∗ increases
with the Ctr–Sw traffic ( f βs) and decreases with the Ctr–Ctr traffic (βc) and the network size S. Next,
we formulate the same problem for various topologies and examine optimal and heuristic solutions.

4.2. Integer Quadratic Programming (IQP) for Optimal Solution

Let us examine the case of a general network topology G, where, similar to our toy example,
all switches have the same number of flows f . We make the simplifying assumption that all switches
feature the same number of flows, as a first step to approach an otherwise fairly complicated problem.
This is the major compromise we make in this work, in our attempt to comprehend the nature of the
problem. We also assume that both the number of flows per switch f and the network topology remain
constant for the interval where the resulting placement and assignment will be applied.



Electronics 2020, 9, 325 6 of 19

The optimization problem of Equation (4) is equivalent to the following IQP problem

min
x,y,z

f βs
S

∑
i=1

S

∑
j=1

wijxij + βc
S

∑
i=1

S

∑
j=1

wijyizj (8)

s.t.
S

∑
j=1

xij = 1, ∀i = 1, . . . , S,

S

∑
i=1

xij = yj, ∀j = 1, . . . , S,

zi ≥ yi/S, ∀i = 1, . . . , S,

xij, zi ∈ {0, 1}, yi ∈ N ∀i, j = 1, . . . , S,

(9)

where i and j take integer values from 1 to S, and each value corresponds to a switch s ∈ S . If xij = 1,
then switch si is assigned to controller cj, which is collocated with switch sj. Non-negative integer yi is
the number yci of switches assigned to controller ci. Binary zi = 1 if and only if a controller is placed at
switch si. Finally, wij is the length of the path connecting switch si (or controller ci) and controller cj.

In Equation (8), the minimized sum consists of two terms; the first corresponds to the Ctr–Sw
traffic (BS) and the second one to the Ctr–Ctr traffic (BC). The first term is the sum of the lengths
of the paths connecting all switches to their controllers, multiplied by f βs. The second term is the
sum over all controller pairs of the products between the length of the path connecting them and the
number of switches assigned to one of them, scaled by βc. The first constraint restricts each switch
to be assigned to only one controller, while the second and third constraint guarantee that yi and zi
have the aforementioned meaning. Especially for the third constraint, binary variable zi has to be
minimized; thus, zi = 0, if yi = 0; otherwise, zi = 1, since 0 ≤ yi ≤ S.

The optimal controller placement given by the solution of Problem (8)–(9) is C∗ = {si ∈ S : zi = 1}
and the switch assignment is c∗ = (c∗si

= cj : xij = 1). Given the symmetric matrix w = (wij : i, j =
1, . . . , S) induced by G, the objective function of Equation (8) is equivalent to vTQv/2 + qTv, where

Q = βc

 0S2×S2
0S2×S 0S2×S

0S×S2
0S×S wS×S

0S×S2
wS×S 0S×S

 , q = f βs
(

w̃1×S2
01×S01×S

)
, v =

(
x̃1×S2

y1×Sz1×S
)

, (10)

x = (xij : i, j = 1, . . . , S), y = (yi : i = 1, . . . , S) and z = (zi : i = 1, . . . , S). The vectors w̃ and x̃ are
composed of all the rows of the matrixes w and x respectively. The superscript indices next to the
matrix symbol give the matrix dimensions, while the 0 matrix is full of zeros.

It is not hard to show that this problem is a generalization of the well-studied facility location
problem, which is NP-Hard, as already observed in [17]. For large network instances, using IQP
to solve the problem might take a prohibitively long time, especially considering that in a dynamic
environment the solution is of value only for as long as the network topology G and the average
number of flows f stay constant. In the following two Sections 5 and 6, we present some heuristics
which trade off optimality with more reasonable computation times.

5. Heuristic Solution

5.1. Number of Controllers by Linear Regression

As a first step for proposing heuristics for the control traffic minimization problem, we seek to
obtain an expression which will yield estimates of the optimal number of controllers, given the average
number of flows f and the network size S. We will denote these estimates by Ch, with the superscript
h indicating that their purpose is for use in heuristic algorithms. Arguably, there are more properties
of the network’s topology graph which generally affect the optimal number of controllers, such as the



Electronics 2020, 9, 325 7 of 19

degree distribution. We tried, however, to obtain a relatively simple expression, even at the cost of less
accurate estimates.

To do so, we solve Problems (8)–(9) for multiple network topologies, provided by the Internet
Topology Zoo collection [5], which is a reference point widely used in the controller placement research.
Our purpose is to extract an appropriate expression from the optimal solutions, to be used as a
predictive model for the general case. We do not consider the bandwidth or latency features of
these networks, but only the graphs of this collection, since our focus in on IoT networks. In our
measurements, we assume that each of these networks represents the network topology G.

The optimal solutions for the examined topologies clearly show a linear relationship between
the fractions C∗/S and f βs/βc. Figure 2a depicts this linear relationship for 7 networks with various
network sizes, and the results of linear regression for those networks. The full set of our solutions
includes 135 networks with size S ≤ 30 and confirms this relationship. The analysis of the results
shows that:

• For low f βs/βc, BC is more weighted than BS, controllers are placed more centrally and
C∗/S decreases.

• For high f βs/βc, the weight of BS is amplified, more distributed controllers are placed and
C∗/S increases.

0 20 40 60 80 100

0
20

40
60

80
10
0

fβs / βc

%
 C
*  / 
S

Network-S
Arpanet196912-4
Gblnet-8
TLex-12
Airtel-16
BtAsiaPac-20
AttMpls-25
Arn-30

(a)

0 20 40 60 80 100

0
20

40
60

80
10
0

fβs / βc

%
 C
*  / 
S

Network-S
Arpanet196912-4
Gblnet-8
TLex-12
Airtel-16
BtAsiaPac-20
AttMpls-25
Arn-30

(b)

Figure 2. Linear regression between C∗/S and f βs/βc for seven example topologies. Topology names,
as listed in the Internet Topology Zoo collection, are suffixed by their size S. (a) Solid gray lines
depict the relationship between C∗/S and f βs/βc. Dashed red lines depict the linear regression of
this relationship (the stairstep lines depict the percentage corresponding to the integer number of
controllers). (b) Dashed red lines depict the linear regression of the relationship between C∗/S and
f βs/βc, as before. Blue dashed lines depict the linear models extracted by Equation (11).

The linear prediction model of the relationship between C∗/S and f βs/βc is noted as (C∗/S) '
a( f βs/βc) + b. We use the optimal solutions to extract slope a and y-intercept b. The slope a decreases
as the network size S increases. Their exponential relationship is illustrated by the dashed line
in Figure 3a. The corresponding dashed line in Figure 3b depicts the linear relationship between
y-intercept b and network size S. Using these models,

Ch =
⌊(

a( f βs/βc) + b
)
S
⌋[1,S]

, where a = 0.79/S1.43, b = −0.003S + 0.0961 (11)

and bxc[1,S] is the closest integer that is lower than x, except for the cases that x is lower than 1 or higher
than S, where x = 1 or x = S respectively. Figure 2b depicts the closeness of the linear regressions of
the relationship between C∗/S and f βs/βc to the linear models extracted by Equation (11).



Electronics 2020, 9, 325 8 of 19

4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

S

1 1 6 6 2 4 2 4 1 8 3 3 8 3 9 7 7 7 5 12 9 7 3 4 3 4 6

sl
op

e 
(a

)

slope ≈ 0.7874 S1.4274

(a) slope a for various S.

4 6 8 10 12 14 16 18 20 22 24 26 28 30

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

S

1 1 6 6 2 4 2 4 1 8 3 3 8 3 9 7 7 7 5 12 9 7 3 4 3 4 6

y-
in

te
rc

ep
t (

b)

y − intercept ≈ -0.003S + 0.0961

(b) y-intercept b for various S.

Figure 3. Slope a and y-intercept b for various networks of size S ≤ 30, given by the Internet Topology
Zoo collection. Top axis gives the number of samples for each S. The dashed lines model the regression
between the boxplot medians and S.

5.2. Controller Placement Using Centrality Metric

Given this estimate of the number of controllers, Ch, the next challenge is to place them. According
to our heuristic method, the Ch controllers are placed at the most “central” switches, which form
the Ch set. The centrality of each switch is evaluated with the use of the betweenness [18] metric,
which is based on shortest paths and gives higher value to nodes with more control over the network.
In this way, the placement needs reasonable computational time, almost negligible, which scales as
O(SL + S2log(S) using the Brandes algorithm [19].

5.3. Switch Assignment

The final challenge is to make the switch assignment. Given any controller placement C in the
form of a binary vector z = {zi = 1 : ci ∈ C}, which has 1 at the indices of the switches where
controllers are placed, we get the following switch assignment sub-problem.

min
x

S

∑
i=1

S

∑
j=1

(
f βswij + βc

S

∑
m=1

wjmzm
)

xij (12)

s.t.
S

∑
j=1

xij = 1, ∀i = 1, . . . , S,

S

∑
i=1

S

∑
j=1

zjxij = S,

xij ∈ {0, 1} ∀i, j = 1, . . . , S,

(13)

where binary zm is not a variable anymore but a given value. It is straightforward to see that this
sub-problem is solvable in polynomial time. Indeed, xij are typical assignment variables, and the
parenthesis in the objective function gives the assignment cost if switch i is assigned to controller
j. For each switch, a simple lookup over the respective C assignment costs suffices, so the overall
computation scales as O(SC).

In our heuristic solution, the switch assignment is given by the solution to the above sub-problem,
when vector z corresponds to placement Ch.



Electronics 2020, 9, 325 9 of 19

5.4. Evaluation of the Heuristic Solution

Figure 4a shows the percentage increase on the total control traffic, when Ch is used instead
of C∗, for the same 7 networks with Figure 2. The increase is less than 5% for the great majority
of f βs/βc, with only the exception of the largest network topology “Arn” that features the highest
increase close to 23%, only, however, for few values of f βs/βc. In Figure 4b, the black boxplots (labeled
as “heuristic”) show the average percentage increase of the control traffic over all values of f βs/βc,
for various networks. Each boxplot corresponds to a set of networks, which are grouped based on their
size. For each network, we estimate the average percentage increase over all integer values of f βs/βc

between 1 and the value that both our heuristic method and the optimal solution place controllers at
all network switches. The total average increase over all cases is approximately 4.5% and the highest
increase is approximately 25%. The median increase of each boxplot is very low for small networks
and extends up to approximately 5% for large networks.

0 20 40 60 80 100

0
5

10
15

20
25

fβs / βc

%
 tr

af
fic

 in
cr

ea
se

Network-S
Arpanet196912-4
Gblnet-8
TLex-12
Airtel-16
BtAsiaPac-20
AttMpls-25
Arn-30

(a)

4-10 11-15 16-20 21-25 26-30

0
10

20
30

40

S

22 19 34 40 20

%
 tr

af
fic

 in
cr

ea
se

optimal w/ con/nt
heuristic
random

(b)

Figure 4. Percentage of control traffic (BS + BC) increase when Ch is used instead of C∗, for various
networks in the Internet Topology Zoo collection. (a) Percentage of control traffic increase for various
f βs/βc in 7 example topologies. Topology names are suffixed by their size S. (b) Percentage of control
traffic increase for several solutions, with respect to the optimum, averaged over all f βs/βc values,
for various networks of size S ≤ 30. Top axis gives the number of network topology samples for each
group of S.

The blue boxplots (labeled as “optimal w/ con/nt”), on the left side of the black ones, show the
corresponding increase when we solve the Problem (8)–(9), however, introducing one more constraint.
This constraint is

S

∑
i=1

zi = Ch, ∀i = 1, · · · , S, (14)

which restricts the time complexity of this problem by reducing the feasible region. The solution of
this new problem uses the number of controllers given by Equation (11); however, their placement
and the switch assignment is estimated as in the optimal solution. We provide these results to
evaluate, individually, the method for estimating the number of controllers. The method seems to
be very efficient, since the total average increase over all cases is less than 2% and the highest one is
approximately 18%.

Finally, the red boxplots (labeled as “random”) show the average percentage increase of the
control traffic for a random placement of Ch switches, depicting how much worse the traffic increase
would be if the controller placement was random, without use of centrality metrics, just by using



Electronics 2020, 9, 325 10 of 19

the controller cardinality estimate. The average increase over all network sizes for random controller
selection is equal to 27% and the highest is 42%, records which are much higher than the previous ones
for the Ch placement.

Figure 5 shows the relative time needed for each solution. The time needed for the proposed
heuristic solution is significantly less than this of the optimal one, since solving Problem (12)–(13) is
much faster than Problem (8)–(9), and the estimation of the betweenness metric for all switches needs
negligible time. The black boxplots present a percentage comparison between the time requirements
of both solutions. In average, the heuristic method requires 0.7% of the time needed for the optimal
solution, which increases up to only 6.5% in the worst case. The blue boxplots, on top of the black
ones, present the time required for solving Problem (8)–(9) with the extra constraint of Equation (14),
which is between the times required for the optimal and heuristic solutions. In average, it requires 46%
of the time needed for the optimal solution. Thus, even if solution of Problem (8)–(9)–(14) has slightly
better performance in terms of control traffic bandwidth requirements, it needs significantly higher
execution time than the proposed heuristic solution.

4-10 11-15 16-20 21-25 26-30

0
20

40
60

80
10
0

S

22 19 34 40 20

%
 ti

m
e 

co
m

pa
ris

on

optimal w/ con/nt
heuristic

Figure 5. Time required by several solutions, as percentage fractions of the optimal solution time.
Results are grouped by S. Top axis gives the number of network topology samples for each S.

Note that these solutions were derived using R [20] and CPLEX [21] in a virtual machine with
12 GB RAM and 4 of the 6 Intel Xeon CPU E5-2620 @ 2.00 GHz cores provided by the hosting HP
ProLiant DL380p Gen8 physical server. Under this environment, the calculation of the heuristic and
optimal solution require on average 0.002 and 78 s respectively.

6. Iterative Heuristics

Although the performance of the previous heuristic is in general satisfactory, examining a single
value is obviously an extreme scenario for a more generic family of iterative heuristic solutions.
We propose here two deterministic iterative algorithms examining multiple candidate placements
based on a suitably defined local search procedure.

6.1. Local Search Algorithm with a Fixed Number of Controllers

A local search algorithm constitutes moving along a trajectory of feasible solutions, where each
solution is a neighbor to the immediate previous, yielding iteratively lower costs until we reach a
point where no neighboring solution exists that further lowers the cost. To move to a new solution,
all neighbor solutions of the current one are examined, and the one yielding the largest decrease is
selected. The obvious drawback of this algorithm is that it generally saturates at some local optimum,
which might not be a global one.



Electronics 2020, 9, 325 11 of 19

A key design decision in a local search algorithm is to define what constitutes a neighboring
solution. There is an underlying trade-off. If the neighborhood size is too large, a lot of time is
consumed by evaluating all the neighbor solutions before each move. In the limit as the neighborhood
is expanded, this approaches exhaustive search. On the other hand, if the neighborhood is too small,
it is easier to get trapped in a local optimum.

In our context, we chose a simple notion of neighborhood. In particular, we consider placement
CA to be a neighbor of placement CB, if and only if CA is derived from CB by moving exactly one
controller to an adjacent switch not currently hosting another controller. Through this definition, we
manage to always keep the number of controllers constant. We call the algorithm performing a local
search starting from any initial placement local-search-fixed, because we keep the number of controllers
invariant throughout it. Its detailed operation is presented in Algorithm 1.

One first generalization of the simple heuristic of the previous section is thus to start with the
placement Ch and plug it in the local-search-fixed algorithm, which will then perform a local search until
saturation; that is, until there is no move to a neighboring placement that lowers the cost.

Algorithm 1 Local-search algorithm with fixed number of controllers (local-search-fixed).

1: input: S , w, Co, f
2:
3: C ← Co
4:
5: cost← Assign-Prob(C, w, f ) (solution of Prob. (12)–(13))
6:
7: repeat
8:
9: C ′ ← C

10:
11: for c ∈ C ′ do
12:
13: N c ← {s ∈ S|w(c,s) = 1, s 6∈ C ′}
14:
15: for n ∈ N c do
16:
17: C”← C ′ − {c} ∪ {n}
18:
19: cost”← Assign-Prob(C”, w, f )
20:
21: if cost” < cost then
22:
23: cost← cost”
24:
25: C ← C”
26:
27: end if
28:
29: end for
30:
31: end for
32:
33: until C = C ′
34:
35: return cost, C

6.2. Local Search Algorithm with Variable Number of Controllers

A second generalization comes from the observation that the number of controllers derived from
the regression is an estimate which does not coincide with the optimal number in many cases, but it
does not generally differ from it by more than a few controllers. A natural idea is then to apply local
search not only starting from the Ch nodes, but to also probe lower and higher numbers of controllers.
For each number, we use the betweenness centrality rank of nodes to select the initial placement, and
subsequently apply the local-search-fixed algorithm. First, we keep reducing the number of controllers,
one at a time, until we observe an increase in the returned cost. Similarly, we then increase the
number of controllers from Ch and upwards until an increase of cost is observed. When lowered
cost values have been observed for both lower and higher than Ch numbers of controllers, we just
select the placement that yields the lowest cost. We call this algorithm local-search-variable. The related
pseudocode is presented in Algorithm 2.

Note that we still examine higher numbers, even if we have found the cost to decrease with
numbers lower than Ch. Indeed, there is no guarantee of monotonicity of the output of the algorithm,



Electronics 2020, 9, 325 12 of 19

something we have also observed on several occasions in practice. This means that, for example,
the returned cost for 10 controllers might be higher than the returned cost for both 9 and 11 controllers.
A consequence of this is that we cannot be certain that we could not have encountered even lower
cost values if we ignored the cost increases at the points we stopped, and continued increasing or
decreasing controller cardinality. A natural question then arises, whether applying local-search-fixed for
all possible numbers of controllers is worth the extra computation time. In our simulations, we found
that this approach very rarely produced any improvement at all over local-search-variable, while often
consuming significantly more time. The regression based estimation of Ch pays off, in saving us from
valuable computation time.

Algorithm 2 Local-search algorithm with variable number of controllers (local-search-variable).
1:
2: input: S , w, Ch, f , betweenness-based order of S
3:
4: costo, Co ← local-search-fixed(S , w, Ch, f )
5:
6: C i ← Ch
7:
8: C ′ ← Co
9:

10: cost′ ← costo
11:
12: repeat
13:
14: C ← C ′
15:
16: cost← cost′
17:
18: C i ← C i − {c ∈ C i with lowest bet/ness metric}
19:
20: cost′, C ′ ← local-search-fixed(S , w, C i, f )
21:
22: until cost′ ≥ cost
23:
24: cost”← cost
25:
26: C”← C
27:
28: C i ← Ch
29:
30: C ′ ← Co
31:
32: cost′ ← costo
33:
34: repeat
35:
36: C ← C ′
37:
38: cost← cost′
39:
40: C i ← C i ∪ {s ∈ S − C i with highest bet/ness metric}
41:
42: cost′, C ′ ← local-search-fixed(S , w, C i, f )
43:
44: until cost′ ≥ cost
45:
46: if cost > cost” then
47:
48: cost← cost”
49:
50: C ← C”
51:
52: end if
53:
54: return cost, C

6.3. Evaluation of Iterative Heuristics

In Figure 6a we can see how the two proposed iterative heuristics compare with our initial
heuristic in terms of cost increase from the optimal cost value. We have clustered our results in five
groups according to the number of switches of the respective topologies. While network size alone is
not sufficient for characterizing the difficulty of the minimum traffic problem in hand, it provides a
coarse measure for estimating it. Similar to the previous section, the percentage increase is the average
over all integer values of f βs/βc between 1 and the value that both our heuristic method and the
optimal solution place controllers at all network switches.



Electronics 2020, 9, 325 13 of 19

While the median value of cost increase does not surpass 5% even for our simple initial heuristic,
the importance of applying an iterative heuristic algorithm becomes greater when we look at worst
case cost increases. Indeed, while in the worst case the cost increase with the initial heuristic can
surpass 10%, the respective worst case increase for local-search with a fixed number of controllers is
no more than 6%, and for a variable number of controllers just a little over 2%.

The results of the time required to obtain these values are depicted in Figure 6b. For topologies
with a small number of switches, we observe that most of the time the optimal solution can be found
even faster than the iterative heuristics, as the problem at hand is relatively easy. As the size and
complexity of the graph grows, however, greater and greater time savings can be obtained by the
heuristic solutions.

4-10 11-15 16-20 21-25 26-30

0
2

4
6

8
10

S

22 19 34 40 20

%
 tr

af
fic

 in
cr

ea
se

heuristic
local-search-fixed
local-search-variable

(a)

4-10 11-15 16-20 21-25 26-30

0
20

40
60

80
10
0

12
0

S

22 19 34 40 20

%
 ti

m
e 

co
m

pa
ris

on

heuristic
local-search-fixed
local-search-variable

(b)

Figure 6. Performance comparison of the heuristic solutions in terms of control traffic and computation
time. Results are grouped by S. Top axis gives the number of network topology samples for each S.
(a) Percentage of control traffic increase for the heuristic solutions, with respect to the optimal, averaged
over all f βs/βc values. (b) Time required by the heuristic solutions, as a percentage fraction of the
optimal solution time.

7. Testbed Experimentation

Our heuristics have been evaluated in the SDN-based IoT testbed of NITOS [22], which includes
30 raspberry pi 3 b+. All raspberry nodes are eqquiped with Open vSwitch (OvS), enabling their
exploitation as OpenFlow-based SDN switches. SDN controllers are built with the assistance of the
Kandoo framework [23]. Kandoo controllers are organised hierarchically, since one is chosen as the
root controller and the others become the local controllers. However, the control traffic produced by
both root and local controllers follow the same pattern, as we will show in Section 7.1. The hierarchy is
mainly for introducing each controller to the other, since all controllers first communicate with the root
controller and then they learn about each other.

7.1. Experimental Confirmation of Remarks 1 and 2

The validity of Remarks 1 and 2 is confirmed by the experimentation results presented in
Tables 1 and 2. Table 1 shows the volume of the Ctr–Sw traffic (measured in kbps) between a Kandoo
controller and a variant number of switches, as it is estimated by iftop. The first and second column
give the number of switches connected to the controller and the number f of flows existing at each
switch. The next three columns show how much Ctr–Sw traffic is produced in each direction; switch to
controller and the opposite; and their sum. Finally, the last column shows how traffic increases with
the number of flows. Obviously, the traffic of each switch is independent of the other switches and
linearly dependent on the number of its flows. Thus, Remark 1 holds and βs ≈ 1.38 kbps.



Electronics 2020, 9, 325 14 of 19

Table 1. The Ctr–Sw bandwidth requirements in kbps for a Kandoo controller. Columns sw�ctr and
ctr�sw refer to the traffic sent from the sw(itch) to the c(on)tr(oller) and the opposite.

# sw # flows sw�ctr ctr�sw sw↔ctr Increase

0 1.06 2.50 3.56 -

2 3.81 2.50 6.31 2× 1.38

1 3 5.19 2.50 7.69 1.38

10 14.80 2.50 17.30 7× 1.37

20 29.40 2.50 31.10 10× 1.38

0 10.60 25.0 35.60 -

10 10 148.0 25.0 173.6 10× 10× 1.38

20 294.0 25.0 311.0 10× 10× 1.37

Table 2. The Ctr–Ctr bandwidth requirements in kbps for two or three Kandoo controllers. In the left
part of the table, there are two controllers, the root (cr) and the local (cl). In the right part, there are
three controllers, which are named as root (cr), local-1 (cl1 ) and local-2 (cl2 ).

# sw at Band/th Increase # sw at Bandwidth Increase

cr ,cl c r
�

c l

c l
�

c r

c r
�

c l

c l
�

c r

cr ,cl1 ,cl2 c r
�

c l
1

c l
1

�
c r

c r
�

c l
2

c l
2

�
c r

c l
1

�
c l

2

c l
2

�
c l

1

c r
�

c l
1

c l
1

�
c r

c r
�

c l
2

c l
2

�
c r

c l
1

�
c l

2

c l
2

�
c l

1

0, 0 20 20 - - 0, 0, 0 20 20 20 20 0 0 - - - - - -

1, 1 103 103 83 83 1, 1, 1 105 105 105 105 105 105 85 85 85 85 105 105

2, 2 151 151 48 48 2, 2, 2 151 151 151 151 151 151 46 46 46 46 46 46

3, 3 197 197 46 46 10, 10, 10 490 490 490 490 490 490 8× 42 8× 42 8× 42 8× 42 8× 42 8× 42

4, 4 239 239 42 42 1, 0, 0 70 35 70 35 0 0 50 15 50 15 0 0

10, 10 490 490 6× 41 6× 41 2, 0, 0 112 42 112 42 0 0 42 7 42 7 0 0

1, 0 70 35 50 15 10, 0, 0 422 69 422 69 0 0 8× 39 8× 3 8× 39 8× 3 0 0

2, 0 112 42 42 7 0, 1, 0 54 88 20 20 68 34 34 68 0 0 68 34

3, 0 152 47 40 5 0, 2, 0 60 130 20 20 110 40 6 42 0 0 42 6

4, 0 192 50 40 3 0, 10, 0 87 438 20 20 422 67 8× 3 8× 39 0 0 8× 39 8× 3

10, 0 422 67 6× 38 6× 3 1, 1, 0 103 103 70 35 70 35 83 83 50 15 70 35

0, 1 54 88 34 68 2, 2, 0 152 151 111 41 111 41 49 48 41 6 41 6

0, 2 60 130 6 42 10, 10, 0 489 488 423 68 422 68 8× 42 8× 42 8× 39 8× 3 8× 39 8× 3

0, 3 65 168 5 38 0, 1, 1 54 88 54 88 101 101 34 68 34 68 101 101

0, 4 68 210 3 42 0, 2, 2 60 129 60 129 150 150 6 41 6 41 49 49

0, 10 87 437 6× 3 6× 38 0, 10, 10 87 439 87 439 486 485 8× 3 8× 39 8× 3 8× 39 8× 42 8× 42

On the other hand, Table 2 presents the volume of the Ctr–Ctr traffic (measured in kbps) between
two or three Kandoo controllers. The right part of Table 2 gives the volume of the traffic exchanged
between the root (or cr) and one local (or cl) controller, when various numbers of empty switches
(no flows) are assigned to these controllers. The first column shows the number of switches at each
controller. The next two columns show the traffic sent from one controller to the other, for both
directions (cr�cl and cl�cr), while the last two columns show the traffic increase when switches are
added to the controllers. The increase at each row is relative to the previous row. For example, the last
columns of the row starting with (1,1) show the 83 kbps traffic increase at each direction when an extra
switch is assigned to each controller. The same columns of the row starting with (1, 0) indicate 50 kbps
and 15 kbps traffic increases for cr � cl and cl � cr respectively, when one switch is added solely to cr.
Finally, the row starting with (0, 1) shows the corresponding 34 kbps and 68 kbps increases, when one



Electronics 2020, 9, 325 15 of 19

switch is added solely to cl . We observe that as more and more switches are assigned to a controller,
the increase of the traffic sent from this controller to the other one converges to 38 kbps per switch,
while the corresponding increase in the opposite direction converges to 3 kbps per switch. Moreover,
the traffic increase due to the assignment of extra x and y switches to the two controllers cr and cl
respectively is approximately the sum of the individual traffic increases, which would happen if only
x or y switches were assigned to only one of the two controllers cr or cl respectively. Based on these
two observations, it is safe enough to assume that Remark 2 holds, and each extra switch increases the
Ctr–Ctr traffic by βc ≈ 38 + 3 = 41 kbps.

The right part of Table 2 shows the corresponding traffic increases with three controllers, called
root (or cr), local-1 (or cl1) and local-2 (or cl2). Similarly, each extra switch assigned to a controller
triggers an increase of its Ctr–Ctr traffic exchanged with other controllers, which is independent of
the other assigned switches and converges to βc ≈ 42 kbps. Thus, Remark 2 is also confirmed by
these results. Due to space limitations, we present a fraction of our experimental results, although we
have been experimenting with more than three Kandoo controllers and obtaining the same qualitative
conclusions. Finally, we observed that the increase of the Ctr–Ctr traffic, when flows are added to the
switches, is minor and negligible.

7.2. The Heuristic Solution in the “Abilene” Topology

We use NITOS for deploying the network topology of “Abilene” from the Internet Topology Zoo
Collection. We configure 11 NITOS raspberries to behave as OpenFlow switches, leveraging on OvS
and three wireless interfaces. Each pair of nodes is connected with the use of a dedicated wireless
frequency, which is not used by any other pair of nodes. Thus, there is no interference between the
wireless links. For each pair, one node is the access point (AP) and the other one is the station, both
in wireless distributed system (WDS) mode, which is required when the interfaces are added to OvS
instances (they are not working in promiscuous mode). The total control traffic is measured with use of
nmetrics. A special version of nmetrics is utilized, which is integrated with the OMF Monitoring Library
(OML) [24] and enables the collection of the traffic measurements in a database, where OMF stands for
the cOntrol and Management Framework for testbed experimentation. In addition, we measure the
energy consumption for the transmission of the control traffic, using the Energy Monitoring Framework
(EMF) [2] of NITOS. The wireless interfaces use the AR9380 chipset and the 802.11 g protocol, as well as
specially designed devices capable of providing fined-grained measurements of the energy consumed
by them. The hosts are virtually created at each node with the use of Mininet [25]. The flows of each
switch are proactively configured and enable the hosts to ping each other.

In this experimentation, we configure each switch to have f flows, where f = 250, 470 or 750.
Using our previous results, f βs ≈ 345 kbps, 648.6 kbps or 1035 kbps and βc ≈ 42 kbps; thus, f βs/βc ≈
8.21, 15.44 or 24.64. Figure 7 presents the optimal controller placement, as well as the placements
returned by our base heuristic and by local-search-variable algorithm. For f βs/βc = 8.21, the optimal
(Figure 7a) and heuristic (Figure 7d,g) solutions use the same number of controllers, equal to 3. The base
heuristic includes “Houston” switch in its returned placement, because it features the third highest
betweenness centrality. The optimal placement, however, includes a controller at “Denver” instead
of “Houston,” despite its lower centrality metric. Due to this difference, the base heuristic solution
requires approximately 6% more bandwidth than the optimal one. The local-search-variable algorithm is
able to discover this improvement and applies it, returning the optimal placement.



Electronics 2020, 9, 325 16 of 19

New York

Chicago

Washington DC

Seattle

Sunnyvale

Los Angeles

Denver

Kansas City

Houston

Atlanta

Indianapolis

● Controller

Switch

Ctr−Ctr

Ctr−Sw

(a)

New York

Chicago

Washington DC

Seattle

Sunnyvale

Los Angeles

Denver

Kansas City

Houston

Atlanta

Indianapolis

● Controller

Switch

Ctr−Ctr

Ctr−Sw

(b)

New York

Chicago

Washington DC

Seattle

Sunnyvale

Los Angeles

Denver

Kansas City

Houston

Atlanta

Indianapolis

● Controller

Switch

Ctr−Ctr

Ctr−Sw

(c)

New York

Chicago

Washington DC

Seattle

Sunnyvale

Los Angeles

Denver

Kansas City

Houston

Atlanta

Indianapolis

● Controller

Switch

Ctr−Ctr

Ctr−Sw

(d)

New York

Chicago

Washington DC

Seattle

Sunnyvale

Los Angeles

Denver

Kansas City

Houston

Atlanta

Indianapolis

● Controller

Switch

Ctr−Ctr

Ctr−Sw

(e)

New York

Chicago

Washington DC

Seattle

Sunnyvale

Los Angeles

Denver

Kansas City

Houston

Atlanta

Indianapolis

● Controller

Switch

Ctr−Ctr

Ctr−Sw

(f)

New York

Chicago

Washington DC

Seattle

Sunnyvale

Los Angeles

Denver

Kansas City

Houston

Atlanta

Indianapolis

● Controller

Switch

Ctr−Ctr

Ctr−Sw

(g)

New York

Chicago

Washington DC

Seattle

Sunnyvale

Los Angeles

Denver

Kansas City

Houston

Atlanta

Indianapolis

● Controller

Switch

Ctr−Ctr

Ctr−Sw

(h)

New York

Chicago

Washington DC

Seattle

Sunnyvale

Los Angeles

Denver

Kansas City

Houston

Atlanta

Indianapolis

● Controller

Switch

Ctr−Ctr

Ctr−Sw

(i)

Figure 7. Visualization of the optimal and heuristic controller placements on the “Abilene” network
topology for various f βs/βc = 8.21, 15.44 or 24.64. The colour of each edge indicates whether the
corresponding link is used for Ctr–Ctr and/or Ctr–Sw traffic, while the edge width indicates the
bandwidth used for this traffic. (a) Optimal placement ( f βs/βc = 8.21). (b) Optimal placement
for f βs/βc = 15.44. (c) Optimal placement for f βs/βc = 24.64. (d) Heuristic placement for
f βs/βc = 8.21. (e) Heuristic placement for f βs/βc = 15.44. (f) Heuristic placement for f βs/βc = 24.64.
(g) Local-search-variable placement for f βs/βc = 8.21. (h) Local-search-variable placement for
f βs/βc = 15.44. (i) Local-search-variable placement for f βs/βc = 24.64.

For f βs/βc = 15.44, all three solutions are identical, as depicted in Figure 7b,e,h. Finally,
for f βs/βc = 24.64, the heuristic solutions (Figure 7f,i) return a more extended set of controllers,
compared to the optimal solution (Figure 7c). The result is an approximate 2% increase of the total
required bandwidth for the control traffic.

In all cases of Figure 7, the energy consumption in the wireless interfaces, disabling non-control
packets to be forwarded over these links, is proportionate to the total control traffic transmitted over



Electronics 2020, 9, 325 17 of 19

these links. These results prove that the minimization of the control traffic volume comes together
with the minimization of the associated energy consumed.

8. Discussion and Future Work

In our search for efficient heuristics, we also experimented with some meta-heuristic approaches.
One of them consisted of repeating the local-search-fixed algorithm multiple times, initiated by random
initial placements. This is a typical approach to combat convergence of local search algorithms at local
optima. Another meta-heuristic we examined is simulated annealing [26], which, at every step, decides
whether to move to a neighbor solution chosen at random, with a probability that depends on the cost
difference between the current and the neighbor solution and a control parameter called temperature
which decreases with time. We have found both of these meta-heuristics to require substantially more
time to reach the same performance as our proposed heuristics, which is explained by the fact that
they do not use problem-specific information.

The selection of the betweenness centrality metric as a common element of our heuristic algorithms
was made on the basis of its simplicity and the fact that it is calculated in very short time. As part of
future work, we plan to extend our research by using other centrality metrics, apart from betweenness.

Even though the paper focused on the problem of minimizing the control traffic volume,
the analysis can be easily extended with a bias for short paths between switches and controllers.
Path hop counts are usually the major factor affecting latency in dense networks with negligible
propagation delays. A goal of minimizing both the total control traffic and the average Ctr–Sw delay
could be expressed as minimizing a weighted sum of the two quantities, which is the following

arg min
c

(
∑
s∈S

ws f sβs + ∑
(c1,c2)∈C2

w(c1,c2)yc1 βc + δ ∑
s∈S

ws) =
arg min

c

(
∑
s∈S

ws( f sβs + δ) + ∑
(c1,c2)∈C2

w(c1,c2)yc1 βc), (15)

where δ is a parameter controlling the relative weight of the average Ctr–Sw hop count minimization
in the objective. From the above formulation, it is evident that our results in this paper can be applied
directly just by modifying the ratio f βs/βc with ( f βs + δ)/βc.

9. Conclusions

In this work, we investigated the optimal controller placement and switch assignment to minimize
total control traffic in a SDN-based IoT network, relying on Ctr–Sw and Ctr–Ctr traffic models
experimentally validated in a testbed. We formulated the problem, which is NP-hard, using IQP,
and proposed a set of heuristic algorithms that expedite the controller placement and switch assignment
procedure, while incurring negligible traffic increases with respect to the optimal solution. Tested
with a large number of topology graphs from the Internet Zoo Topology collection, the simplest of our
heuristic solutions yielded approximately 4.5% more bandwidth than the optimal solution on average,
while the most advanced yielded an average increase of approximately 1%, and notably, a worst case
increase of less than 3%.

Author Contributions: Conceptualization, K.C.; software, K.C. and D.G.; writing—original draft preparation,
K.C.; writing—review and editing, D.G.; supervision, P.F.; project administration, T.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is co-financed by Greece and the European Union (European Social Fund-ESF) through
the Operational Program “Human Resources Development, Education and Lifelong Learning 2014-2020” in
the context of the project “Dynamically Reconfigurable Backhaul/Fronthaul in Software Defined 5G Networks”
(MIS 5005859).

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2020, 9, 325 18 of 19

References

1. Choumas, K.; Giatsios, D.; Flegkas, P.; Korakis, T. The SDN Control Plane Challenge for Minimum Control
traffic: Distributed or Centralized? In Proceedings of the CCNC, Las Vegas, NV, USA, 11–14 January 2019.

2. Keranidis, S.; Kazdaridis, G.; Passas, V.; Korakis, T.; Koutsopoulos, I.; Tassiulas, L. Online Energy
Consumption Monitoring of Wireless Testbed Infrastructure Through the NITOS EMF Framework.
In Proceedings of the 8th ACM International Workshop on Wireless Network Testbeds, Experimental
Evaluation & Characterization, Miami, FL, USA, 30 September 2013.

3. Heller, B.; Sherwood, R.; McKeown, N. The Controller Placement Problem. In Proceedings of the HotSDN,
Helsinki, Finland, 13 August 2012.

4. Nguyen, T.M.C.; Hoang, D.B.; Chaczko, Z. Can SDN Technology Be Transported to Software-Defined
WSN/IoT? In Proceedings of the 2016 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 15–18 December 2016.

5. The Internet Topology Zoo. Available online: http://www.topology-zoo.org/dataset.html (accessed on 21
January 2020).

6. Ongaro, D.; Ousterhout, J. In Search of an Understandable Consensus Algorithm. In Proceedings of the
USENIX ATC, Philadelphia, PA, USA, 19–20 June 2014.

7. The Raft Consensus Algorithm. Available online: https://raft.github.io/ (accessed on 21 January 2020).
8. Zhang, T.; Bianco, A.; Giaccone, P. The role of inter-controller traffic in SDN controllers placement.

In Proceedings of the IEEE Conference on NFV and SDN (NFV-SDN), Palo Alto, CA, USA, 7–9
November 2016.

9. OpenDaylight (ODL). Available online: https://www.opendaylight.org/ (accessed on 21 January 2020).
10. Open Network Operating System (ONOS). Available online: https://wiki.onosproject.org/ (accessed on 21

January 2020).
11. Lange, S.; Gebert, S.; Spoerhase, J.; Rygielski, P.; Zinner, T.; Kounev, S.; Tran-Gia, P. Specialized Heuristics

for the Controller Placement Problem in Large Scale SDN Networks. In Proceedings of the International
Teletraffic Congress (ITC), Ghent, Belgium, 8–10 September 2015.

12. Killi, B.P.R.; Rao, S.V. Capacitated Next Controller Placement in Software Defined Networks. IEEE Trans.
Netw. Serv. Manag. 2017, 14, 514–527. [CrossRef]

13. Bari, M.F.; Roy, A.R.; Chowdhury, S.R.; Zhang, Q.; Zhani, M.F.; Ahmed, R.; Boutaba, R. Dynamic Controller
Provisioning in Software Defined Networks. In Proceedings of the International Conference on Network
and Service Management (CNSM), Zurich, Switzerland, 14–18 October 2013.

14. Ksentini, A.; Bagaa, M.; Taleb, T. On using SDN in 5G: The controller placement problem. In Proceedings of
the IEEE GLOBECOM, Washington, DC, USA, 4–8 December 2016.

15. Mostafaei, H.; Menth, M.; Obaidat, M.S. A Learning Automaton-Based Controller Placement Algorithm for
Software-Defined Networks. In Proceedings of the GLOBECOM, Abu Dhabi, UAE, 9–13 December 2018.

16. Su, Z.; Hamdi, M. MDCP: Measurement-aware distributed controller placement for software defined
networks. In Proceedings of the IEEE ICPADS, Melbourne, Australia, 14–17 December 2015.

17. Qin, Q.; Poularakis, K.; Iosifidis, G.; Tassiulas, L. SDN Controller Placement at the Edge: Optimizing Delay
and Overheads. In Proceedings of the IEEE INFOCOM, Honolulu, HI, USA, 16–19 April 2018.

18. Newman, M.E.J. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010.
19. Bhardwaj, S.; Niyogi, R.; Milani, A. Performance Analysis of an Algorithm for Computation of Betweenness

Centrality. In Proceedings of the ICCSA, Santander, Spain, 20–23 June 2011.
20. The R Project for Statistical Computing. Available online: http://www.r-project.org (accessed on 21 January

2020).
21. IBM ILOG CPLEX for Faculty. Available online: http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer (accessed on 21 January 2020).
22. Network Implementation Testbed Using Open Source Platforms (NITOS). Available online: https://nitlab.

inf.uth.gr/NITlab/nitos (accessed on 21 January 2020).
23. Hassas Yeganeh, S.; Ganjali, Y. Kandoo: A Framework for Efficient and Scalable Offloading of Control

Applications. In Proceedings of the HotSDN, Helsinki, Finland, 13 August 2012.

http://www.topology-zoo.org/dataset.html 
https://raft.github.io/
https://www.opendaylight.org/
https://wiki.onosproject.org/
http://dx.doi.org/10.1109/TNSM.2017.2720699
http://www.r-project.org
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
https://nitlab.inf.uth.gr/NITlab/nitos
https://nitlab.inf.uth.gr/NITlab/nitos


Electronics 2020, 9, 325 19 of 19

24. Singh, M.; Ott, M.; Seskar, I.; Kamat, P. ORBIT Measurements framework and library (OML): Motivations,
implementation and features. In Proceedings of the TRIDENTCOM, Trento, Italy, 23–25 February 2005.

25. Mininet: An Instant Virtual Network on Your Laptop. Available online: http://mininet.org (accessed on 21
January 2020).

26. Aarts, E.; Korst, J. Simulated Annealing and Boltzmann Machines; John Wiley & Sons: Chichester, UK, 1988.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://mininet.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model and Problem Statement
	Problem Solution
	Insights from the Closed form Solution for Mesh Networks
	Integer Quadratic Programming (IQP) for Optimal Solution

	Heuristic Solution
	Number of Controllers by Linear Regression
	Controller Placement Using Centrality Metric
	Switch Assignment
	Evaluation of the Heuristic Solution

	Iterative Heuristics
	Local Search Algorithm with a Fixed Number of Controllers
	Local Search Algorithm with Variable Number of Controllers
	Evaluation of Iterative Heuristics

	Testbed Experimentation
	Experimental Confirmation of Remarks 1 and 2
	The Heuristic Solution in the ``Abilene'' Topology

	Discussion and Future Work
	Conclusions
	References

