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 A B S T R A C T

This paper proposes a state-of-the-art framework for adapting Active Queue Management (AQM) in 5G and 
beyond cellular networks with disaggregated Radio Access Network (RAN) deployments. While existing AQM 
algorithms effectively mitigate bufferbloat in monolithic RAN deployments, their potential in disaggregated 
ones remains largely unexplored. This gap particularly relates to AQM algorithms relying on communication 
between layers distributed across distinct network entities to operate. Our research explores the current 
literature on AQM, identifies the gaps regarding disaggregated deployments, and introduces a comprehensive 
framework that employs Artificial Intelligence (AI) and Machine Learning (ML) within the RAN Intelligent 
Controller (RIC) for adapting AQM in such deployments. We evaluate our novel solution on a previously 
proposed AQM algorithm which requires cross-layer communication, using OpenAirInterface5G (OAI5G) 
to deploy a disaggregated RAN and a connected User Equipment (UE) that experiences realistic network 
conditions, including noise and mobility. Finally, we assess its accuracy through the Quality of Service (QoS) 
achieved for our disaggregated deployment on the NITOS testbed.
1. Introduction

The fifth generation (5G) of cellular networks is an evolution over 
its predecessors, prioritizing enhanced performance across diverse net-
work conditions and requirements. To achieve this, 5G has introduced 
the concept of network slicing [1], which divides the physical network 
into several logical networks. Each network slice allocates dedicated re-
sources for the specific requirements of the different services deployed 
within the network. As defined in the Release 15 specifications [2], 
5G categorizes these services into three distinct categories [3], includ-
ing Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency 
Communications (URLLC), and Massive Machine-Type Communica-
tions (mMTC). The eMBB service prioritizes throughput to support 
high-data-rate applications, while URLLC targets applications requir-
ing highly reliable and low-latency communication, prioritizing la-
tency. Lastly, mMTC facilitates communication across multiple de-
vices, ensuring minimal energy consumption and efficient low-data-rate 
transmission.

Modern cellular networks rely on buffers to optimize resource uti-
lization. However, when these buffers become congested, bufferbloat
[4] occurs, causing significant issues, such as prolonged sojourn times, 
higher latency, and degraded network performance. Bufferbloat in 5G 
can arise when network slices support multiple services with inher-
ently conflicting objectives, such as eMBB and URLLC services. While 
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eMBB prioritizes high throughput by heavily filling the network queues 
to maximize resource utilization, this excessive buffering increases 
latency, undermining URLLC.

AQM is a network congestion control technique that prevents
bufferbloat. It dynamically manages the buffers within the network 
components, replacing the simplistic passive queue management tech-
niques, such as drop-tail and drop-head. More specifically, AQM main-
tains buffer occupancy at a reasonable size, preventing excessive buffer-
ing and avoiding congestion or delays. The existing literature has 
proposed various AQM algorithms that manage queues across differ-
ent protocol stack layers within the 5G architecture. However, based 
on our research, most of these algorithms are latency-sensitive and 
were designed for the monolithic deployment of 5G, overlooking its 
potential for disaggregated deployments. In a disaggregated 5G de-
ployment, the network protocol stack layers, including their functions 
and corresponding queues, are distributed across separate network 
entities, which may reside on different machines, introducing latency 
between them. As a result, previously introduced latency-sensitive AQM 
algorithms may prove inadequate in disaggregated 5G deployments.

Despite significant progress in 5G disaggregation research, the 5G 
specification does not address AQM in disaggregated 5G deployments, 
making its inclusion essential in future generations of cellular networks. 
In our previous study [5], we proposed a comprehensive solution for 
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managing AQM algorithms in disaggregated 5G and beyond networks. 
However, a significant limitation of that work is that it serves primarily 
as a proof-of-concept, evaluated exclusively under ideal network con-
ditions, undermining its effectiveness and reliability in unpredictable 
and suboptimal real-world scenarios. In this research, we address this 
limitation and provide a more comprehensive approach by:

• Incorporating realistic conditions into our experiments, including 
mobility and variable network quality.

• Expanding our prior implementation and enhancing the AI/ML 
integration within each RIC to address complex traffic patterns 
and network conditions.

• Demonstrating and evaluating the effectiveness of our approach 
and the performance improvements achieved under realistic net-
work environments.

This paper comprises six primary sections. Section 1 provides a 
comprehensive overview of the bufferbloat phenomenon and AQM, 
along with an overview of our contribution. Section 2 delves into the 
literature on AQM in 5G networks. Sections 3 and 4 outline the pro-
posed solution and introduce the implementation framework used for 
experimentation. Section 5 presents the evaluation framework and as-
sesses the proposed solution. Finally, Section 6 concludes this research 
paper and discusses future directions for AQM beyond 5G networks.

2. Related work

All AQM algorithms aim to control congestion by actively managing 
the sizes of the queues within the network entities. They achieve this 
by intelligently discarding packets or employing strategies to handle the 
different types of traffic in distinct ways, preventing bufferbloat and en-
suring the efficient utilization of the transmission channel. Studies have 
demonstrated that keeping queue sizes small can significantly decrease 
sojourn times, resulting in lower latency [6]. As this research primarily 
focuses on 5G and beyond cellular networks, we investigate previously 
proposed AQM algorithms that have been previously implemented and 
evaluated in cellular networks.

The literature on AQM in cellular networks is extensive, featuring 
numerous algorithms that operate on different principles. Some AQM 
algorithms function independently within individual queues. These 
algorithms operate based solely on the queue they manage, without 
any further knowledge of the entire network, effectively eliminating 
the overhead and the complexity associated with coordinated decision-
making. Such examples include Random Early Detection (RED) [7], 
Controlled Delay (CoDel) [8], Proportional Integral Controller En-
hanced (PIE) [9], Fair Queuing CoDel (FQ-CoDel) [10], RED-SP-CoDel 
[11], and RLRBM [12]. More specifically, RED probabilistically drops 
incoming packets as the queue length increases, while CoDel drops 
them based on their sojourn time. The application of RED and CoDel in 
Long-Term Evolution (LTE) 4G cellular networks has been extensively 
studied in [13] and in [6], respectively. PIE is an alternative to CoDel 
and performs similarly to RED as it probabilistically drops packets 
to maintain average queuing delay at a target value. FQ-CoDel is 
an extension of CoDel that manages individual flows independently, 
providing fair bandwidth distribution among concurrent flows. RED-
SP-CoDel combines RED, Static Priority scheduling, and CoDel, offering 
flow prioritization and enhanced QoS. Finally, RLRBM uses Deep Rein-
forcement Learning (DRL) to find the optimal size of the buffers within 
the Radio Link Control (RLC) depending on the network conditions 
within the 5G network.

While these algorithms are adequate, they are not optimal as they do 
not consider the network as a whole, which has driven the development 
of more advanced algorithms. Such AQM algorithms require cross-layer 
communication to make informed and coordinated decisions to manage 
the queues of the network. These algorithms include Stochastic Fair 
Queuing (SFQ) [14], 5G Bandwidth Delay Product (5G-BDP) [15], UPF-
SDAP Pacer (USP) [15], and Dynamic RLC Queue Limit (DRQL) [15]. 
2 
SFQ was implemented in LTE and relies on communication between 
the RLC and PCDP layers to manage their respective buffers, preventing 
bufferbloat by deciding whether to forward packets from Packet Data 
Convergence Protocol (PDCP) to RLC. In 5G-BDP, the Service Data 
Adaptation Protocol (SDAP) layer communicates with the Medium Ac-
cess Control (MAC) and the RLC layers to forward the optimal amount 
of data based on the available channel capacity, the remaining data 
on the RLC buffers and the current transmission state. USP requires 
communication between the SDAP and RLC layers and the User Plane 
Function (UPF) at the 5G Core Network (5G-CN). More specifically, 
the SDAP layer communicates with the RLC layer to find its capacity, 
referred to as its saturation point. Meanwhile, the UPF communicates 
with the SDAP to forward its packets, ensuring an optimized flow rate 
while respecting the saturation point of RLC.

The DRQL algorithm requires communication between the SDAP 
and RLC layers. Due to this requirement for cross-layer communication 
and its simplicity, it makes the perfect example to demonstrate the 
challenges of implementing such algorithms in disaggregated network 
deployments. In DRQL, the MAC scheduler determines the capacity of 
the RLC buffers, while the SDAP layer deals with their occupancy. More 
specifically, the SDAP layer continuously queries the RLC to learn the 
capacity and occupancy of its buffers and determine whether to forward 
its packets. On the other hand, the MAC layer pulls as much data from 
the RLC buffers as the radio channel can support. When the MAC pulls 
the whole RLC buffer, it increases the capacity of the buffers, as it could 
have handled more data if not starved. In contrast, if the MAC scheduler 
manages to process part of the data in the RLC buffers, it adjusts their 
capacity to align with the available radio channel capacity.

Finally, [16] presents the Antelope, designed to switch between AQM 
algorithms, depending on the conditions of the environment. However, 
this system has not been implemented in 5G and overlooks the com-
plexities that arise in disaggregated 5G networks. Similarly, the authors 
in TC-RAN [17] propose a general traffic control system to manage 
AQM algorithms in monolithic and disaggregated 5G and 6G net-
works. However, they do not address the potential challenges that arise 
with the introduction of latency in such disaggregated deployments, 
nor do they offer solutions for mitigating these issues. Our proposed 
scheme addresses these challenges, enabling the implementation of 
AQM algorithms that require cross-layer communication between lay-
ers distributed across separate network entities in disaggregated and 
high-latency 5G deployments.

3. AQM in disaggregated networks

While the literature on AQM in 5G and beyond networks is exten-
sive, it primarily focuses on monolithic 5G-RAN deployments. In 5G 
cellular networks, the base station formerly known as Node-B (NB) is 
now referred to as Next-Generation NB (gNB), distinguishing it from the 
Enhanced NB (eNB) of 4G networks. One key difference between the 
gNB and the eNB is that the design of the gNB focuses on virtualization 
and cloud-native capabilities. To achieve this, eNB and gNB feature 
distinct architectures, with functional splits introduced by 3GPP [18] 
allowing the disaggregation of gNB into multiple entities, including 
the Centralized Unit (CU) and the Distributed Unit (DU). The 3GPP 
7.2x split [19] is the most widely adopted functional split option. In 
this configuration, the CU manages the higher layers of the protocol 
stack, while the DU handles the lower layers of the disaggregated gNB. 
More specifically, the CU encompasses the SDAP, the Radio Resource 
Control (RRC), and the PDCP layers. The DU incorporates the RLC, the 
MAC, and the Physical (PHY) layers. Additionally, the CU comprises the 
control plane (CU-CP) and the user plane (CU-UP). The CU-CP contains 
the RRC layer and handles the exchange of control messages, while the 
CU-UP includes the SDAP layer and manages data flow.
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Fig. 1. RLC and SDAP queues in disaggregated gNB.

3.1. AI/ML assisted AQM

Integrating most AQM algorithms into the 5G-RAN requires the uti-
lization of the QoS Flow Identifier (QFI) queues at the SDAP, alongside 
the Data Radio Bearer (DRB) queues at the RLC, as illustrated in Fig. 
1. Each QFI queue corresponds to a different QoS flow, incorporat-
ing the downlink packets based on their respective QFI provided by 
the UPF. The SDAP scheduler maps the QFI queues to their respec-
tive DRB queues and forwards the packets, ensuring the appropriate 
prioritization to maintain the desired QoS.

As outlined previously, some AQM algorithms depend on cross-
layer communication, such as DRQL, which relies on the interaction 
between the SDAP and RLC layers to operate. In a monolithic gNB, 
the CU and DU entities reside on a single host machine, enabling 
instantaneous communication between the SDAP and RLC layers. In 
contrast, a disaggregated gNB separates the CU and DU entities across 
different network nodes, increasing the communication latency and 
degrading the performance of latency-sensitive AQM algorithms.

Our proposed solution leverages AI/ML to overcome the AQM 
challenges caused by the communication latency in disaggregated 
gNB deployments. More specifically, we decouple and reallocate a 
portion of the control plane of the 5G-RAN to the RIC entities, adhering 
to the O-RAN specification [20]. The RIC entities employ AI/ML to 
forecast the state of DU, which is essential for the CU to support AQM. 
With this approach, the CU avoids the latency for direct information 
exchange with the DU, thereby improving performance and enabling 
support for AQM in disaggregated gNB deployments.

As is evident, the prediction accuracy significantly impacts the 
validity and performance of our approach. In our previous study, we 
developed a proof of concept, where the RIC entities monitored solely 
the state of the DU to predict its behavior for decision-making at the 
CU. By experimenting with simplified network conditions and traffic 
patterns, we found that the data from the DU alone was sufficient for 
accurate predictions, demonstrating significant performance improve-
ments. However, as we more accurately reflect real-world scenarios, the 
network conditions and traffic patterns become increasingly complex, 
and the data from the DU alone is no longer sufficient for making 
accurate predictions.

We build on our previous approach by having the RIC entities 
monitor the overall 5G-RAN for more comprehensive historical data, 
including supplementary information from the DU and the CU entities. 
This additional information enables the RIC entities to comprehend 
more diverse and complex network conditions. As this study focuses 
specifically on the performance of our framework adapting DRQL, the 
RIC analyzes these historical patterns to forecast upcoming fluctua-
tions of the DRB queues based on the current network conditions and 
mobility patterns. Subsequently, the SDAP leverages these forecasts to 
make informed decisions on packet forwarding. To thoroughly assess 
our approach, we comprehensively evaluate it with the DRQL algorithm 
under realistic network conditions in a disaggregated gNB deployment.

3.2. RIC assisted DRQL

As with most cross-layer AQM algorithms, DRQL requires seamless 
communication between the protocol stack layers, residing at CU and 
DU, to operate. More specifically, it necessitates that the SDAP layer at 
3 
Fig. 2. Communication between RIC entities and the CU and DU.

the CU retrieves precise measurements of the status of the DRB queues 
within the RLC at the DU, consisting of their actual size and limit. The 
accuracy and efficiency of DRQL highly depend on the time-critical 
delivery of these measurements from the DU to the CU. When the CU 
requests these measurements from the DU, the communication latency, 
denoted as 𝑇𝑐 , causes the provided information to reflect the status 
of the DRB queues in the past. More specifically, we observe that the 
information that CU requested at 𝑡0 −2𝑇𝑐 and received at 𝑡0 reflects the 
state of the DU at 𝑡0 − 𝑇𝑐 , leading to suboptimal forwarding decisions 
at the SDAP scheduler based on outdated information. Furthermore, 
since the SDAP relies on this information for every packet in its QFI 
queues to facilitate forwarding decisions, the latency in acquiring it 
hinders performance, resulting in reduced throughput and increased 
overall latency.

Our approach leverages RIC to forecast the status measure-
ments of the DRB queues by analyzing historical data, eliminating 
the need for SDAP to query these measurements from RLC when-
ever a packet needs to be forwarded. The CU and DU entities 
periodically provide their current measurements to Non-Real Time RIC 
(Non-RT RIC) and Near-Real Time RIC (Near-RT RIC). The utilization 
of the different RIC entities depends on the control loops [21] defined 
in the O-RAN specification [22]. While the 3GPP specification does not 
define specific control loops for the CU and the DU entities, the O-RAN 
architecture introduces these loops to determine which RIC entity to 
employ, based on the time required to make and apply a decision. More 
specifically, the near-real-time loop or Loop 2, performed by CU entities 
and the Near-RT RIC, operates within time frames of 10 ms to 1s, 
making the Near-RT RIC particularly well-suited for model inference. 
On the other hand, the non-real-time loop or Loop 3, executed by the 
Non-RT RIC, has a duration longer than 1 s and is suited for model 
training.1

The Non-RT RIC trains the AI/ML models using the collected mea-
surements and transfers them into the Near-RT RIC. The data collection 
for the training process is performed in a monolithic network deploy-
ment, ensuring the network conditions align with those DRQL was 
designed for and enabling its proper operational behavior. With this 
setup, the Non-RT RIC can monitor the behavior of the entire network 
under DRQL, including the fluctuations in the DRB queues that occur 

1 Additionally, the real-time control loop, or Loop 1, is used by the 
time-sensitive DU and RU entities as it operates on timescales of 1 ms.



A. Stoltidis et al. Computer Communications 236 (2025) 108108 
Fig. 3. Timing of the communication between Near-RT RIC and the CU and the DU entities.
when the MAC scheduler pulls data from them, every Transmission 
Time Interval (TTI). With this comprehensive data, the Non-RT RIC 
trains predictive AI/ML models to identify the network patterns that 
influence the fluctuations of the DRB queues.

The Near-RT RIC utilizes the trained AI/ML models to make in-
formed control decisions through its microservices, named xApps, 
based on the current received measurements, as Fig.  2 depicts. It 
continuously collects the necessary measurements by requesting E2SM-
KPM [23] through report messages, forecasts the anticipated fluctua-
tions of the DRB queues, and then broadcasts these predictions to the 
CU. Finally, the CU employs the prediction data from the Near-RT RIC 
to avoid the 𝑇𝑐 latency.

3.3. The challenge of accurate time forecasting

For effective model training and inference, the communication 
latencies between the Near-RT RIC and the CU or the DU, denoted 
as 𝑇𝑅𝐶 and 𝑇𝑅𝐷, must be considered. As the left part of Fig.  3 
illustrates, the Near-RT RIC periodically sends report messages to the 
CU and the DU entities every 𝑇𝑟 to retrieve their KPM. These report 
messages undergo a latency of 𝑇𝑅𝐶 and 𝑇𝑅𝐷 to reach the CU and 
the DU, respectively. Upon receiving a report request, each entity 
promptly responds to the Near-RT RIC with its KPM. Therefore, the 
Near-RT RIC receives these KPM responses at regular intervals of 𝑇𝑟, 
each undergoing a latency 𝑇𝑅𝐶 or 𝑇𝑅𝐷, depending on its source.

As shown in the right part of Fig.  3, the Near-RT RIC periodically 
collects 𝑀 and 𝑁 KPM from the CU and the DU over a duration 
𝑀𝑇𝑟 and 𝑁𝑇𝑟, respectively. It then forecasts 𝐾 values, representing the 
status measurements of the DRB queues for a duration of 𝐾𝑇𝑤. The 
predictive models at the Near-RT RIC ensure accurate time alignment 
and synchronization with the 5G operation by factoring in the 𝑇𝑅𝐷, 𝑇𝑅𝐶
latencies alongside the inference time, denoted as 𝑇𝑚, in their predic-
tions. More specifically, the Near-RT RIC delivers its predictions to the 
CU after a cumulative elapsed time of 𝑇𝑅𝐷 + 𝑇𝑚 + 𝑇𝑅𝐶 and 𝑇𝑚 + 2𝑇𝑅𝐶 , 
measured from the time reference of the most recent measurements 
received by the DU and the CU before forecasting. By incorporating 
𝑇𝑅𝐷, 𝑇𝑅𝐶 , and 𝑇𝑚 into the prediction process, our approach ensures that 
any timing misalignment between the predicted values and the actual 
state of the DRB queues is corrected. As a result, when the CU receives 
4 
the predictions every 𝑇𝑚, it can rely on them to make decisions, as they 
accurately reflect the current state of the DU.

In DRQL, however, the SDAP scheduler cannot use these predictions 
directly, as they are discrete values, each representing the status of the 
DRB queues for a duration of 𝑇𝑤 = 𝑇𝑚∕𝐾. Instead, SDAP forwards 
packets as they arrive at the QFI queues, potentially transmitting 
multiple packets within a single 𝑇𝑤 interval. Similarly to our previous 
research [5], the SDAP scheduler mitigates this issue by linearly inter-
polating the intermediate values within the 𝑇𝑤 interval to estimate the 
measurements of the DRB queues based on the received predictions.

4. Implementation framework

This section describes the implementation framework we employed 
to develop and evaluate our proposed solution, including the 5G con-
figuration and AI/ML training.

4.1. 5G deployment

Our implementation of DRQL in 5G, called OAI5G-DRQL, is an 
extension of the original OAI5G [24], a 5G-RAN implementation, 
where we introduced several enhancements:

• Enhancement of the SDAP layer to include multiple SDAP queues 
and a Round-Robin (RR) scheduler for packet forwarding.

• Modification of the RLC layer, enabling it to dynamically adjust 
its DRB queue limits based on the volume of downlink packets it 
receives.

• Extension of the currently implemented KPM sent from DU to 
CU to accommodate additional, not-yet available, RLC and SDAP 
queue-specific information, as expected in E2SM-KPM.

In our research, we rely on the Radio Frequency (RF) Simulator to 
simulate exclusively part of the PHY layer of the 5G-RAN. While the 
NITOS testbed supports the deployment of the 5G-RAN using software-
defined radios, it lacks the hardware necessary to emulate realistic 
channel conditions, including channel noise and mobility. The RF 
Simulator bridges this gap by accurately replicating these phenomena 
in software, delivering results that closely approximate those obtained 
from hardware-based approaches. Moreover, NR-UE emulates a com-
mercial off-the-shelf (COTS) UE connected to 5G-RAN. A Python3
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Non-RT RIC performs data preprocessing and model training, while 
FlexRIC [25] is the Near-RT RIC as it connects to the 5G-RAN nodes 
via the E2 interface, allowing monitoring and control via report and 
control messages. To accurately configure the latencies between net-
work components, we deploy the CU, DU, and UE on a shared NITOS 
computational node. Furthermore, since the Near-RT RIC and the Non-
RT RIC do not work simultaneously, we deployed both on a dedicated 
NITOS node with high computational capacity. Additionally, we deploy 
the 5G-CN, using OAI5G Core Network [26], on a separate NITOS node. 
Finally, we employ traffic control (tc) to control the latencies between 
each node within the NITOS network.

4.2. Dataset creation

To train the AI/ML models and predict the status of the DRB queues 
with supervised learning, we create a comprehensive dataset [27] 
under a range of network requirements and conditions. The developed 
dataset encompasses the behavior of network entities under DRQL in 
different bufferbloat scenarios. To cause bufferbloat, we use a single 
network slice along with iperf3 [28] and ping [29], emulating the 
conflicting high-throughput and low-latency requirements of eMBMS 
and URLLC. Subsequently, we emulate the different bufferbloat scenar-
ios by incorporating diverse application requirements. By adjusting the 
downlink transmission rate in iperf3, we replicate applications such 
as file downloading, video streaming, and cloud gaming. Furthermore, 
adjusting the ping interval enables the emulation of applications such 
as online gaming and video conferencing.

To more closely mirror real-world conditions, we encompass com-
plex and diverse channel quality to the produced dataset, enhancing 
its realism and relevance. More specifically, we explored a couple 
of channel and UE mobility models and incorporated them into the 
dataset. The first model featured a stationary UE on a noise-free chan-
nel, while the second one involved a UE that follows a movement 
pattern according to the normal distribution on a channel containing 
Additive White Gaussian Noise (AWGN). We refer to these models as
real-wave, designating the former as the static-wave and the latter as 
the dynamic-wave. To simulate the UE movement on the dynamic-wave, 
we use channel models, a channel simulation feature integrated into 
the latest versions of the RF Simulator. More specifically, we adjust 
the path loss parameter to account for changes in signal strength as 
the UE moves through different propagation environments, ensuring a 
realistic representation of dynamic channel conditions. For the mobile 
UE on the dynamic-wave, we adjusted the path loss parameter following 
the normal distribution, with values ranging from a minimum of 6dB 
to a maximum of 30dB to emulate a similar channel quality range to 
that of dataset [30]. On the other hand, for the stationary UE on the
static-wave, we set the default path loss parameter of 0 dB, reflecting 
ideal channel conditions.

Finally, the developed dataset contains the Key Performance Mea-
surements (KPM) of the 5G-RAN, sampled at 𝑇𝑟 = 1 ms under DRQL 
in a monolithic network deployment, characterized by 𝑇𝑐 = 0. To 
create distinct network downlink conditions, we employ combinations 
of different parameters in iperf3 and ping alongside the previously 
introduced real-wave models. These combinations include UDP traffic 
at [1, 10, 40, 100] Mbps alongside ICMP transmission with intervals of 
[1, 10, 100] ms, ensuring the accuracy and relevance of the trained 
models and their predictions across diverse applications. Therefore, 
the compiled dataset includes entries representing the KPM with their 
respective timestamps.

4.3. Data preprocessing

Accurately forecasting the fluctuations of the precise limits and ac-
tual size measurements of the DRB queues on the dynamic-wave presents 
an inherent complexity, necessitating adjustments to our AI/ML ap-
proach. In contrast to our previous dual-model approach, where the 
5 
Non-RT RIC used a couple of separate models to predict the actual size 
and limit of the DRB queues based solely on their respective historical 
fluctuation, now we propose a new single-model method that uses only 
one predictive model. The Non-RT RIC multiplexes the actual size 
with the limit of the DRB queues, which depend on each other, into 
a single variable called the remaining size. We define the remaining 
size as the difference between the limit and the actual size. In this 
way, it reduces the additional computing power required by the two 
AI/ML models, suggested in our preliminary study, to avoid facilitating 
parallel model inference for a more consistent forecasting horizon, 
minimizing frequent fluctuations in its inference duration. Similarly, 
the Near-RT RIC computes this remaining size from its KPM before 
performing inference.

According to the new single-model approach, the process begins 
with preprocessing the provided dataset for model training, which 
includes the KPM of the entire network. More specifically, we transform 
the prediction into a multivariate time series forecasting problem, 
considering the latencies that the Near-RT RIC has with the CU and 
the DU entities. As illustrated in Fig.  3 for the same report request, 
sent by the Near-RT RIC to the CU and DU entities, the received 
KPM differ by 2|𝑇𝑅𝐷 − 𝑇𝑅𝐶 |. The Non-RT RIC should incorporate this 
timing difference in its preprocessing stage and accurately align the 
measurements before training. It achieves this by deriving the feature-
label pairs with a rolling window approach, preserving causality by 
refraining from data shuffling. For the measurements arriving from the 
DU, the Non-RT RIC applies the rolling window technique, considering 
the 𝑇𝑅𝐷 +𝑇𝑚+𝑇𝑅𝐶 time interval to account for the DU to Near-RT RIC, 
model inference, and Near-RT RIC to CU latencies. Likewise, the Non-
RT RIC performs the same technique to the measurements received 
from the CU, considering the 𝑇𝑚+2𝑇𝑅𝐶 time interval to incorporate the 
CU to Near-RT RIC, model inference, and Near-RT RIC to CU latencies.

Since not every KPM is equally critical in the prediction process, 
we can prune unnecessary KPM from the dataset to avoid overfitting 
and save on hardware resources. To find which KPM are essential, we 
employ a Random Forest regressor, an extension of the Random Forest 
algorithm, with 100 decision trees to classify which input features affect 
the state of the DRB queues the most. The output of the regressor 
indicates that the model is primarily affected by the latest KPM values, 
specifically the limit and actual size of the DRB queues. Additionally, 
several other factors significantly impact the accuracy of the model. 
These include KPM regarding the rate at which the RLC receives its 
data from the upper layers and transmits it to the lower ones, the 
size and occupancy of the QFI queues, and the block error rate at the 
MAC layer. Furthermore, the amount of data transmitted and received 
within a MAC frame and slot, the detected signal-to-noise ratio, and 
the data volume reported in the MAC buffer status report also affect 
the accuracy of the predictive model.

Some KPM values are aggregated values that can increase indefi-
nitely, causing inconsistencies in the scaling procedure since the scaling 
procedure partly relies on the highest value of each KPM to scale it. 
We compute the difference between two consecutive observations of 
these KPM values, creating the modified features to feed into the time 
series forecasting model. The Near-RT RIC follows a similar procedure 
on these KPM before performing inference. In the final step of the 
preprocessing stage, the Non-RT RIC scales the data in the [0, 1] range 
using MinMaxScaler, provided by scikit-learn [31], and splits the 
dataset into 70% training, 20% validation, and 10% test sets. The Near-
RT RIC also scales its KPM before performing inference with the same 
scaler.

4.4. Model architecture and training

Our preliminary studies and experiments indicate that Long 
Short-Term Memory (LSTM) models outperform other predictive 
models, including Seasonal Autoregressive Integrated Moving Average 
(SARIMA) and Random Forests for this forecasting. The Non-RT RIC 
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employs TensorFlow [32] with Keras [33] to handle the development 
and training of the LSTM model, while KerasTuner optimizes training 
hyperparameters for precise forecasting results. We employ tensor-
flow.keras.sequential for both models to stack multiple layers. 
We specify that the input layer for the model is an LSTM layer con-
sisting of 𝑁 nodes. KerasTuner determines the parameters for the 
subsequent LSTM layers, including their quantity and configurations. 
The final layers, also determined by KerasTuner, are fully connected 
dense layers that produce predictions aligned with the dimensions of 
our target output labels, denoted as 𝐾 in this context. We utilize the 
Mean Squared Error (MSE) as our chosen loss function, effectively 
penalizing errors and providing remarkable overall model performance. 
The choice of optimizer algorithm is also pivotal in shaping how errors 
propagate through the network. The Adam optimizer is an excellent 
choice since it strikes an optimal balance between learning the most 
relevant and less frequent features.

To avoid overfitting, we add a Dropout layer between the LSTM and 
the Dense layers, in the range of 0 to 0.5 and a step size of 0.1. The 
Dropout layer prevents overfitting by randomly deactivating a fraction 
of neurons during training. Additionally, we simplify the model by 
restricting KerasTuner to a maximum of three LSTM layers and three 
Dense layers, each containing a small number of neurons within the 
range of 32 to 512. We also implement early stopping during training 
to monitor the model accuracy on the validation set and halt training 
when the performance starts to degrade.

The dimensions of the output labels highly depend on the inference 
duration of the model since 𝐾𝑇𝑤 ≈ 𝑇𝑚, which we calculate as the 
mean inference duration obtained from multiple observations of model 
inference. If these two do not align, the model is invalid, as it fails 
to accurately capture the timing necessary for reliable predictions and 
subsequent actions within the system. Therefore, aligning the duration 
the output labels represent with the inference duration ensures that 
the predicted labels align with the temporal dynamics of the system, 
allowing for accurate forecasting and effective decision-making based 
on the inferred results. Finally, for simplicity in our experiments, we 
assume 𝑇𝑤 = 𝑇𝑟.

5. Evaluation results

The effectiveness of our implementation relies significantly on the 
precision of the trained models utilized by the Near-RT RIC to fore-
cast the missing information for the CU to support OAI5G-DRQL. The 
subsequent Section 5.1 assesses the level of precision achieved by the 
models. Sections 5.2 and 5.3 provide a performance evaluation of the 
effective throughput and latency, with the latter measured as the Round 
Trip Time (RTT). Throughput and latency are the fundamental metrics 
commonly used in the literature to effectively and sufficiently capture 
the performance of an AQM algorithm. In our study, these metrics 
are the most significant evaluation criteria as they directly reflect on 
the accuracy of the predictions, with inaccuracies adversely impacting 
them the most. More specifically, Section 5.2 evaluates our implemen-
tation in the static-wave scenario, where the channel quality remains 
consistently strong, making forecasting straightforward. This experi-
ment demonstrates the performance improvements our contribution 
provides under optimal network conditions. Section 5.3 showcases our 
implementation under the realistic network conditions of the dynamic-
wave. The significant increase in performance of our implementation 
in this experiment further establishes the effectiveness of our approach 
as a robust solution for integrating AQM under disaggregated 5G-RAN 
deployments.

5.1. Evaluation of model accuracy

The validity of our implementation heavily depends on the accuracy 
of the trained models, which we measure using Normalized Root Mean 
Square Error (NRMSE). NRMSE is the optimal metric for assessing 
6 
Fig. 4. NRMSE of predictions.

model accuracy for our research as it is sensitive to large deviations, 
highlighting the critical prediction errors that can lead to congestion 
or inefficient utilization of the DRB queues and significantly impact 
network performance. Additionally, the NRMSE normalizes the error, 
enabling a clear performance comparison across the different models 
and varying conditions.

Fig.  4 depicts the NRMSE of each of the 𝐾 = 40 predictions of the 
trained models, compared to their actual respective RLC measurements. 
This comparison highlights the performance of the models and provides 
the basis for selecting the optimal predictive model. Each line depicts 
the NRMSE of the 0 ≤ 𝑘th ≤ 𝐾 −1 prediction within a future horizon of 
𝐾 predictions for each model, under various conditions: single or dual 
model, using Random Forest or not, within dynamic or static wave, as well 
as how many 𝑁 = 𝑀 KPM used for forecasting. It is evident that as the 
prediction horizon extends, the corresponding NRMSE also increases.

The accuracy of our predictions, derived from the dual-model ap-
proach in our previous study for the static-wave with 𝑁 = 𝑀 = 1000
input features, remains consistently low, illustrated by the diamond-
pointed line, with an error rate below 5%. However, the same approach 
does not perform nearly as accurately on the dynamic-wave, at least dou-
bling the NRMSE to 10.5% and increasing it linearly with the less recent 
predictions (with higher 𝑘), as illustrated by the inverted-triangle-
pointed line. In contrast, the new single-model approach outperforms the 
previous one within the dynamic-wave, whether using as input features 
the KPM from the overall 5G-RAN stack or the pruned KPM produced 
by the Random Forest algorithm.

As the problem involves multivariate time series forecasting, the 
hardware memory requirements increase exponentially with the num-
ber of input features used. Fig.  4 also illustrates the relationship be-
tween the number of input features and the model accuracy. Firstly, we 
evaluate the model trained using the KPM of the overall 5G-RAN stack. 
When using the 𝑁 = 𝑀 = 60 latest KPM as input features, the NRMSE, 
represented by the cross-pointed line, is the lowest for the dynamic-
wave at approximately 5.5%. For a lower number of input features, 
𝑁 = 𝑀 = 30 and 𝑁 = 𝑀 = 10, represented by the triangle-pointed and 
circle-pointed lines, the NRMSE slightly increases to around 7.5% and 
8.5%. Considering we have prevented overfitting, this minimal increase 
in NRMSE indicates that the most recent KPM values primarily impact 
the future behavior of the DRB queues in RLC. Therefore, by reducing 
the number of input features, we conserve memory resources without 
significantly sacrificing accuracy.

Furthermore, we enhanced the accuracy further by incorporating 
more input features with reduced information from each KPM. More 
specifically, we use the pruned KPM produced by the Random Forest
algorithm and increase the number of input features to 𝑁 = 𝑀 = 100
without requiring additional memory. The model that uses 100 pruned 
KPM, marked by the x-pointed, achieves a lower NRMSE than the 
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60 KPM model, marked by the cross-pointed line. We attribute this 
reduction in NRMSE to the increased crucial information fed into the 
network for forecasting. This optimized model is the model we will be 
using in the subsequent experiments.

Considering model accuracy, inaccurate predictions do not nec-
essarily imply invalid decision-making under real-time execution. To 
evaluate the accuracy of the decision-making process, we define two 
additional metrics regarding the percentage of false positives and false 
negatives. These metrics more accurately reflect the effect of the pre-
dictions in our approach as they directly correlate to the percent-
age of incorrect decisions our implementation makes under realistic 
network conditions. False positives might occur when the prediction 
over-evaluates the underlying channel and exceeds the expected re-
maining size, which indicates that the SDAP might forward packets 
to the DRB queues even if they do not fit, potentially resulting in 
packet drops. False negatives, on the other hand, may emerge when 
the predictions under-evaluate the channel and are lower than the 
expected remaining size, suggesting that the SDAP will not forward 
packets even though it could. Fig.  5 depicts the percentage of remaining 
size relative to the actual limit of the DRB queues under real-time 
monitoring on the dynamic-wave, sampled every 1 ms for a time horizon 
of 500 ms. The prediction value used by the SDAP scheduler regarding 
the remaining size of the DRB queues, marked by the triangle-pointed 
line, follows closely the trend of the expected remaining size, marked 
by the circle-pointed line. Moreover, even when the prediction over-
evaluates the channel and exceeds the expected remaining size, the 
average percentage of false positives is measured below 8% ± 0.5% for 
all the experiments conducted. Similarly, when that channel is under-
evaluated, the average percentage of false negatives is even less and 
approximately equal to 1% ± 0.8%.

This discrepancy between the percentages of false positives and false 
negatives emerges due to the lack of KPM that sufficiently describe 
the latency between the CU and the DU. False positives arise as the 
SDAP overestimates the capacity of the DRB queues and forwards 
packets without accounting for those residing on the buffers of the 
interprocess communication channels between the CU and the DU into 
consideration. For false negatives to occur, however, two conditions 
must be met. Firstly, the SDAP must correctly underestimate the ca-
pacity of the DRB queues and fail to consider that this capacity might 
increase within the next TTI. Secondly, the buffers of the interprocess 
communication channels must not be able to forward enough packets 
to fill the DRB queues within the next TTI. Due to the nature of the 
high-throughput experiments within the high-latency environment, the 
buffers on the interprocess communication channels between the CU 
and the DU entities remain congested. This congestion, along with the 
properties of these high-throughput interprocess buffers, decreases the 
probability of false negatives by reducing the likelihood that the second 
condition occurs while simultaneously increasing the probability of 
false positives.

5.2. Evaluation of performance on the static-wave

5.2.1. Experiment description
This experiment investigates our proposed AQM solution for OAI5G-

DRQL in static-wave, assessing its performance in terms of effective 
throughput and latency under bufferbloat. Specifically, we connect a 
single UE to the 5G-RAN that establishes only one Packet Data Unit 
(PDU) session with distinct QFI queues for the UDP and the ICMP 
packets, both mapping to a single RLC Acknowledge Mode (AM) DRB, 
as depicted in Fig.  6. We then generate 50 Mbps of downlink UDP traffic 
from the 5G-CN while transmitting ICMP packets every 100 ms to the 
UE. Finally, we measure the throughput of the UDP traffic and the RTT 
of the ICMP traffic at the UE.

We conduct three sets of experiments with the static-wave and 
a monolithic and a disaggregated gNB. The monolithic gNB is dis-
tinguished by 𝑇 ≈ 0 while the disaggregated gNB by 𝑇 ≈ 10 ms [34], 
𝑐 𝑐
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Fig. 5. Real-time predictions and the expected percentage of the remaining size.

Fig. 6. ICMP and UDP QFI queues mapped to a single DRB.

which is the maximum fronthaul latency allowed in 5G. In the first 
set of experiments, we use the original OAI5G, which supports a 
drop-tail AQM in the DRB queues, restricting the queue sizes to a 
predetermined limit by discarding incoming packets that would surpass 
it. However, it does not support an AQM algorithm that requires cross-
layer communication. In OAI5G, the SDAP forwards the packets from 
its QFI queues, as they become available, to their respective DRB 
queue without querying any information from the RLC. This experiment 
highlights the baseline performance, demonstrating the effectiveness 
of the original OAI5G system while also revealing the issues that 
arise when bufferbloat occurs, emphasizing the importance of AQM 
algorithms that consider the entire 5G-RAN to operate. In the second 
set of experiments, we use OAI5G-DRQL without RIC, which re-
quired direct communication between the CU and the DU entities. This 
experiment demonstrates the performance degradation of DRQL when 
introducing latency between the CU and DU entities. Finally, the third 
set of experiments assesses OAI5G-DRQL with RIC, where the Near-
RT RIC employs the trained multivariate time series forecasting model 
to provide the anticipated status measurements of the DRB queues to 
the CU. Since the Near-RT RIC is collocated with the CU, the latency 
between Near-RT RIC and DU is 𝑇𝑅𝐷 = 𝑇𝑐 ≈ 10 ms, while the latency 
between Near-RT RIC and CU is 𝑇𝑅𝐶 ≈ 0.

In OAI5G-DRQL with RIC, the model at the Near-RT RIC uses the 
latest 𝑁 = 𝑀 = 100 KPM, representing the metrics of the entire 5G-
RAN over a duration of 100𝑇𝑟 = 100 ms, to forecast 𝐾 = 40 values. 
These forecasts indicate the remaining size of the DRB queues for the 
next 40𝑇𝑤 = 40 ms, starting from the moment the CU receives them. 
To ensure that the predictions accurately align with the actual DRB 
queue measurements over time, the model incorporates the inference 
time 𝑇𝑚 ≈ 40 ms and the reporting latencies 𝑇𝑅𝐶 ≈ 0 and 𝑇𝑅𝐷 ≈ 10 ms. 
Therefore, the model uses 100 ms of historical data to predict the 
subsequent 40 ms, following a time interval of 𝑇𝑅𝐷 + 𝑇𝑚 + 𝑇𝑅𝐶 ≈ 50 ms
from the generation of the latest KPM received by the Near-RT RIC.
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Fig. 7. Effective throughput on the static-wave experiments.

5.2.2. Experiment results
Each set of experiments was conducted twelve times, with the best 

and worst runs discarded to minimize outliers. The results presented 
reflect the average performance observed across the remaining runs, 
along with the statistical accuracy, measured as the mean variability of 
the metrics across the remaining ten experiments. Fig.  7 illustrates the 
effective throughput measured at the UE for each set of experiments. 
As the DRB queues are empty at the beginning of each experiment, 
the MAC scheduler has less data to process, resulting in a relatively 
low initial throughput. As the DRB queues fill up, the MAC scheduler 
processes more data, gradually increasing throughput. Eventually, the 
throughput stabilizes at a higher level, representing the maximum 
achievable throughput the MAC scheduler can process, adhering to the 
capacity limitations of the wireless channel.

In the first set of experiments, the original OAI5G shows little 
to no impact on throughput from the monolithic or disaggregated 
deployment of the gNB, as it remains relatively unaffected regardless of 
the deployment. We observe that the effective throughput is 41.3±0.4%
Mbps for a monolithic gNB and 40.6 ± 0.4% Mbps for a disaggregated 
one, represented by the red circle-pointed and the pink triangle-pointed 
lines. This consistency in throughput alongside the ±0.4% mean vari-
ability across our experiments demonstrates the minimal influence of 
the deployment option in the original OAI5G, as the CU maintains a 
steady packet forwarding rate, regardless of the latency between the 
CU and the DU.

In the second set of experiments, the OAI5G-DRQL without RIC 
in a monolithic gNB deployment achieves higher throughput than the 
original OAI5G, with an average of 45.7 ± 0.8% Mbps, as shown by 
the blue cross-pointed line. The observed increase in throughput is 
driven by the dynamic fluctuation of the DRB queues in response to 
the available radio channel capacity, allowing the MAC scheduler to 
process strictly the amount of data needed within every single 𝑇𝑇 𝐼 . 
More specifically, in OAI5G-DRQL, the MAC scheduler avoids process-
ing the unnecessarily large RLC queues that the original OAI5G would, 
containing data that would eventually be dropped and retransmitted 
due to insufficient channel capacity. Therefore, it saves on resources, 
increasing the overall effective throughput while avoiding unnecessary 
starvation and overflow of the DRB queues. On the other hand, OAI5G-
DRQL without RIC features very low throughput at almost 0.9 ± 0.1%
Mbps in a disaggregated gNB deployment, represented by the green 
x-pointed line. This decrease in throughput occurs as every packet at 
the QFI queues undergoes the high-latency communication between the 
CU and the DU entities for DRQL to operate. This latency causes a 
bottleneck at CU and leads to starvation of the DRB queues, making 
DRQL completely redundant which justifies the low variability across 
our experiments.
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In the third set of experiments, we observe that the OAI5G-DRQL 
with RIC eliminates the throughput degradation observed in OAI5G-
DRQL without RIC experiences in disaggregated gNB deployments. 
Specifically, OAI5G-DRQL with RIC effectively avoids the direct latency-
heavy communication between its CU and DU entities, making its 
decisions based on the predictions received by the Near-RT RIC and 
achieving 37±1.2% Mbps throughput, as depicted by the black diamond-
pointed line. Its throughput is slightly lower than the original OAI5G, 
which is an acceptable tradeoff given the significantly decreased RTT 
it achieves, as presented below.

To assess the effectiveness of OAI5G-DRQL with RIC, we also inves-
tigate the RTT of the ICMP packets as they are affected by the high 
throughput in the same DRB queues. In Fig.  8, we present the RTT in 
a logarithmic scale, with the actual average RTT measurements on the 
𝑦-axis, to better visualize its lower and higher values within the same 
graph. In the first set of experiments, we observe the negative impact on 
RTT due to the absence of an AQM algorithm that does not consider the 
whole network to operate, such as the drop-tail approach in the original 
OAI5G. In the original OAI5G, the SDAP immediately forwards packets 
to the DRB queues, regardless of their QFI. Since the volume of the 
UDP packets is higher than that of the ICMP packets, they accumulate 
in front of the ICMP packets in the DRB queues. As the ICMP packets 
lag behind the UDP packets, the RTT increases linearly regardless of 
whether the gNB deployment is monolithic or disaggregated, as illus-
trated by the circular and triangular-pointed lines, respectively. In the 
disaggregated gNB deployment, the RTT growth rate increases slightly 
compared to the monolithic deployment, primarily due to higher initial 
acceleration in the accumulation of UDP packets in the DRB queues.

In the second set of experiments, we observe that OAI5G-DRQL 
without RIC significantly reduces RTT compared to the original OAI5G, 
highlighting the importance of cross-layer AQM algorithms. Although 
it may seem counterintuitive, OAI5G-DRQL without RIC in a disaggre-
gated gNB deployment, depicted by the green x-pointed line, features a 
lower RTT of 40.5±0.1% ms compared to the 101.5±0.9% OAI5G-DRQL 
without RIC in a monolithic deployment, shown by the blue cross-
pointed line. As our previous study thoroughly explains, this occurs 
due to the nature of the Round-Robin SDAP scheduler and the latency 
between the CU and the DU entities. More specifically, in DRQL, the 
SDAP scheduler experiences this 𝑇𝑐 latency for every packet in its QFI 
queues. When 𝑇𝑐 ≈ 0, the SDAP scheduler predominantly forwards UDP 
traffic, as the QFI queue for the UDP packets almost always contains 
UDP packets due to their higher transmission frequency and volume. 
In contrast, the QFI queue for ICMP packets remains mostly empty, 
as the ICMP packets arrive less frequently. Therefore, UDP packets 
accumulate in front of the ICMP packets at the DRB queues, increasing 
RTT. However, when 𝑇𝑐 ≈ 10, the SDAP scheduler experiences at least 
2𝑇𝑐 ≈ 20 ms on each UDP packet to decide whether to forward it. As the 
SDAP scheduler experiences this latency, it forwards the UDP packets at 
a notably slower pace while the ICMP queues begin to fill up. Since both 
QFI queues have data, the SDAP scheduler interchangeably forwards 
the UDP and the ICMP traffic. Thus, the ICMP packets do not lag behind 
the UDP packets at the DRB queues, decreasing RTT at the expense of 
significantly reduced throughput, as already shown.

In the third set of experiments, we compare the performance of 
OAI5G-DRQL with RIC in a disaggregated gNB deployment with the 
OAI5G-DRQL without RIC in a monolithic deployment. In both cases, 
downlink traffic avoids the additional DRQL communication overhead, 
preventing the impedance of the SDAP scheduler and ensuring ro-
bust decision-making for packet forwarding. Specifically, OAI5G-DRQL 
with RIC achieves an RTT of 80.1 ± 1.1% ms, depicted by the black 
diamond-pointed line, approximately 20 ms higher than the monolithic 
OAI5G-DRQL without RIC. This 20 ms increase in RTT occurs as each 
ICMP packet undergoes 2𝑇𝑐 ≈ 20 ms round-trip delay between the CU 
and the DU.

The experiments demonstrate the importance of our approach to 
integrating sophisticated AQM algorithms that require cross-layer com-
munication in disaggregated high-latency deployments. We showcased 
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Fig. 8. Achieved RTT on the static-wave experiments.

that our proposed OAI5G-DRQL with RIC enhances throughput com-
pared to OAI5G-DRQL without RIC in disaggregated deployments, ap-
proaching the performance of a monolithic gNB while maintaining rel-
atively low RTT values. These improvements mitigate bufferbloat with 
improved AQM in disaggregated deployments with minimal perfor-
mance degradation. Therefore, our solution enables AQM algorithms, 
initially designed for monolithic gNB deployments, to be employed in 
disaggregated static-wave ones while maintaining stable latency and 
high throughput levels.

5.3. Evaluation of performance on the dynamic-wave

5.3.1. Experiment description
To evaluate our study under realistic network conditions, we con-

ducted the previous sets of experiments with the dynamic-wave across 
different deployment options. More specifically, we evaluated our ap-
proach with the monolithic deployment of the original OAI5G, the 
previously proposed monolithic OAI5G-DRQL without RIC, and our 
proposed disaggregated OAI5G-DRQL with RIC. These implementations 
are particularly significant as the original OAI5G demonstrates the 
necessity for AQM, whereas our OAI5G-DRQL with RIC aims to achieve 
comparable performance in disaggregated gNB deployments to that 
of OAI5G-DRQL without RIC. Finally, the primary distinction in this 
set of tests is the dynamic-wave network conditions, as opposed to the 
previously used static-wave.

5.3.2. Experiment results
To correctly calculate the statistical accuracy, we perform these ex-

periments twelve times under consistent noise and mobility conditions 
and remove two outliers. In line with the previous experiments, Fig.  9 
presents the throughput achieved for each set of deployment options, 
specifically within the dynamic-wave. The introduction of noise and 
mobility in the dynamic-wave reduces throughput from the 25 to 46
Mbps initial range, observed in the static-wave, down to a range of 4 to 
15 Mbps. More specifically, the overall reduction in throughput occurs 
due to channel noise, with its fluctuations resulting from mobility.

As illustrated in the previous experiments, with the static-wave, the 
monolithic OAI5G-DRQL without RIC and the original OAI5G with a 
monolithic gNB outperform our proposed by OAI5G-DRQL with RIC 
by approximately 19% and 10.4%, respectively. Similarly, with the
dynamic-wave, our proposed OAI5G-DRQL with RIC performs nearly 
as well as the OAI5G-DRQL without RIC and the original OAI5G, 
with a slight performance decrease of 2.7% and 16.6%, respectively. 
Additionally, we observe that this performance is consistent as the 
mean variabilities of OAI5G-DRQL with RIC, OAI5G-DRQL without RIC, 
and the original OAI5G are ±3.8%, ±2.8%, and ±2.7%, respectively. 
9 
Fig. 9. Effective throughput on the dynamic-wave experiments.

Fig. 10. Achieved RTT on the dynamic-wave experiments.

Therefore, this reduction in throughput is justified as it enables the dis-
aggregation of the 5G-RAN while maintaining low latency, as indicated 
by decreased RTT values, as presented below.

Fig.  10 depicts the RTT values of the distinct gNB deployments 
within the dynamic-wave in logarithmic scale with the actual average 
RTT measurements on the 𝑦-axis. We observe that the RTT of the 
original OAI5G deployment increases similarly to the previous static-
wave experiments, even in the dynamic-wave. This increase in RTT 
suggests that the traffic volume impacts the network performance more 
significantly than the properties of the underlying channel, including 
noise and mobility.

As expected, the RTT of the OAI5G-DRQL with and without RIC 
decreases and remains stable throughout the experiments, compared to 
the original OAI5G. Similarly to the previous experiments, we observe 
approximately 20 ms increase in latency for our proposed OAI5G-DRQL 
with RIC compared to the previously proposed OAI5G-DRQL without 
RIC. This increase in latency, from 320.4 ± 2.5% ms to 348.3 ± 3.9% ms, 
occurs due to the additional 2𝑇𝑐 ≈ 20s ms round-trip latency that the 
ICMP packets experience. Finally, when we compare the static-wave
with the dynamic-wave, we observe that the overall RTT increases in 
the dynamic-wave. This increase in RTT is due to the unstable nature of 
the underlying physical channel as thedynamic-wave has higher packet 
drop rates due to high noise and mobility. High drop rates lead to more 
retransmissions, which consequently lower the rate at which the MAC 
layer can push packets downlink to the UE and reduce the size of the 
DRB queues, eventually increasing the overall latency.

The dynamic-wave experiment results show that our proposed
OAI5G-DRQL with RIC provides performance benefits comparable to 
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those of the previous experiments, achieving throughput and latency 
levels similar to those of the monolithic OAI5G-DRQL without RIC. 
Additionally, our implementation demonstrated a stable and low RTT 
compared to the high RTT of the original OAI5G, with only a slight 
decrease in throughput. These improvements verify the validity of 
our approach, addressing bufferbloat with improved AQM in realis-
tic disaggregated high-latency deployments in realistic environments
dynamic-wave with noise and mobility. Thus, our solution enables the 
adaptation of various AQM algorithms, such as DRQL, from monolithic 
5G networks to disaggregated ones.

6. Conclusions & future work

This paper introduces an innovative approach that addresses AQM 
in disaggregated 5G and beyond cellular networks where communica-
tion between the CU and the DU entities is required. Our approach 
addresses realistic and complex network conditions by leveraging the 
ability to incorporate AI/ML into the RIC-based architecture of the 
beyond 5G networks. This integration allows us to effectively manage 
previously proposed AQM algorithms in disaggregated deployments 
by considering the latency of communication exchange between the 
CU and the DU entities and the dynamic nature of modern cellular 
networks. Future work will focus on further refining the proposed AQM 
solution by incorporating AI/ML techniques on networks containing 
multiple mobile UE entities and multiple DU entities. This refinement 
will enable our solution to more effectively deliver a comprehensive, 
unified approach rather than focusing on individual network entities 
in isolation.
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